测量高程计算
“测量高程计算”相关的资料有哪些?“测量高程计算”相关的范文有哪些?怎么写?下面是小编为您精心整理的“测量高程计算”相关范文大全或资料大全,欢迎大家分享。
高程计算
3.5.2.2 污水处理构筑物高程布置设计计算
本设计污水处理厂的污水排入磁窑河,磁窑河洪水位较低,污水处理厂出水 能够在洪水位时自流排出。因此,在污水高程布置上主要考虑土方平衡,设计中以二沉池水面标高为基准,由此向两边推算其他构筑物高程。
(1)各处理构筑物间连接管渠长度表(选择水头损失最大的一条管路)。 表3-3 处理构筑物间连接管渠长度表 管渠名称 中间水池至二沉池 二沉池至A/A/O反应池 A/A/O反应池至初沉池 旋流沉砂池至细格栅 提升泵房至粗格栅 粗格栅至进水井 长度(m) 35 23 — — — 管渠名称 二沉池至卡鲁塞氧化沟 氧化沟至旋流沉砂池 — — 提升泵房至粗格栅 粗格栅至进水井 长度(m) 102(700)+29 中间水池至二沉池 初沉池至旋流沉砂池 24.5(700)+20(500 旋流沉砂池至细格栅 (2)各构筑物水头损失见下表。 表3-4 构筑物水头损失 构筑物名称 格栅 初沉池 卡鲁塞尔氧化沟 斜板斜管沉淀池 接触消毒池 水头损失(m) 0.2 0.5 0.5 0.3 0.3 构筑物名称 平
施工测量中的坐标、高程的几种计算方法
4211521095
摘要: 施工测量中的坐标、高程的几种计算方法,利用CAD、EXCEL、软件以及程序计算器互相校核,为外业提供准确的数据,从而保证工程施工的顺利进行。
关键词:施工放样坐标、高程计算。
1概况
“兵马未动、粮草先行”测量工作向来被称为工程施工的“粮草”。其重要性不言而喻。近年来随着全站仪等光电仪器的使用,使我们的测量外业工作变的日益轻松。但是不管仪器怎么先进,我们的内业工作确一直是测量的重头戏。测量内业计算的正确与否,直接影响着我们的施工。
2施工测量内业计算
测量内业的计算,主要是施工放样的坐标计算和高程计算。CAD、EXCEL、测量软件以及程序计算器的使用给我们的计算带来了极大的便利。而且几种方法的互相检算也保证了我们内业资料的正确性。现结合本人的经验,就上述几种方法作一介绍。 -
2.1 利用CAD制图计算
(1)施工放样的资料计算
在施工放样的资料计算,
首先我们利用CAD结合施工所使用的坐标系绘制所建工程的平面图,把所有的结构物按照实际坐标跃然于纸上。在这个步骤中最主要关键的问题是坐标系的转换。大地坐标系中上方为正北方向,代表的是X轴,而在CAD中X州代表的为正东方向,所以在绘图中我们要利用CAD的UCS工具条中的坐标轴旋转UCS功
道路工程高程测量记录表
道路工程高程测量记录
表
Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
道路工程高程测量记录表
制表机关:天津市市
政工程局
批准文号:质监字[2001]315号
年月
道路工程高程测量记录表
制表机关:天津市市政工程局
批准文号:质监字[2001]315号
年月日
道路工程高程测量记录表
制表机关:天津市市政工程局
批准文号:质监字[2001]315号
年月日
道路工程高程测量记录表
制表机关:天津市市政工程局
批准文号:质监字[2001]315号
审核:测量:记录:
年月日
道路工程高程测量记录表
制表机关:天津市市政工程局
批准文号:质监字[2001]315号
年月日
道路工程高程测量记录表
制表机关:天津市市政工程局
批准文号:质监字[2001]315号
年月日
精密三角高程测量
本科学生毕业论文
精密三角高程测量 方案优化设计
系部名称: 测绘工程系
专业班级: 测绘工程 学生姓名: 指导教师: 李秀海 职 称: 副教授
黑 龙 江 工 程 学 院
二○ 年 月
The Graduation Thesis for Bachelor's Degree
Trigonometric Leveling Optimization
Candidate: Sui Yongxu
Specialty : Surveying and Mapping Engineering Class :
Supervisor :Associate Prof. Li Xiuhai
Heilongjiang Institute of Technology
20 - ·Harbin
黑龙江工程学院本科生毕业论文
摘要 ..........................................................................
EXCEl高程计算程序
计算了某高速公路的高程
桩号 68293.131 68294 68296 68298 68300 68302 68304 68306 68308 68310 68312 68314 68316 68318 68320 68322 68324 68326 68328 68330 68332 68334 68336 68338 68340 68342 68344 68346 68348 68350 68351.528 68352 68354 68356 68358 68360 68362 68364 68366 68368 68370 68372 68374 68376 68378 68380
路面设计高程 623.470 623.491 623.539 623.587 623.636 623.684 623.732 623.780 623.829 623.877 623.925 623.974 624.022 624.070 624.118 624.167 624.215 624.263 624.311 624.360 624.408 624.456 624.504 624.553 624.601 624.649 624.697 624.746 6
GPS高程测量原理及方法探讨
广东科技2010.2总第231期 GPS 高程测量原理及方法探讨 谢劲松
(广东省广州市510000 1引言
GPS (欲了解更多?请见本期【科技“生词”解释】技术的出现,为确定大地水准面高提供了新的途径,提高了作业的效率。然而我们的实用高程采用的是以似大地水准面为基准的正常高。因此,我们必须要实现GPS 大地高向正常高的转换,从理论上讲,实现GPS 大地高向正常高转换最好的方法是综合利用GPS 测量数据、重力测量数据和地球重力场模型进行转换。然而,对于一般工程单位来说,考虑到作业成本的问题,人们不可能花那么多的经费去获取昂贵的重力资料。本文就是探讨如何结合工程实际
情况,利用较少的经费获取较高精度的GPS 高程, 从而实现低成本、高效率、高质量的测量成果。 2常用高程系统的基本定义
大地高:大地高系统是以参考椭球面为基准面的高程系
统。某点的大地高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的距离。一般用H 表示。
正高:正高系统是以大地水准面为基准面的高程系统。某点的正高是该点到通过该点的铅垂线与大地水准面的交点之间的距离。一般用H 正高表示。
正常高:正常高系统是以似大地水准面为基准的高程系统。某点的正常高是该点到通过该点的铅垂
GPS高程测量原理及方法探讨
广东科技2010.2总第231期 GPS 高程测量原理及方法探讨 谢劲松
(广东省广州市510000 1引言
GPS (欲了解更多?请见本期【科技“生词”解释】技术的出现,为确定大地水准面高提供了新的途径,提高了作业的效率。然而我们的实用高程采用的是以似大地水准面为基准的正常高。因此,我们必须要实现GPS 大地高向正常高的转换,从理论上讲,实现GPS 大地高向正常高转换最好的方法是综合利用GPS 测量数据、重力测量数据和地球重力场模型进行转换。然而,对于一般工程单位来说,考虑到作业成本的问题,人们不可能花那么多的经费去获取昂贵的重力资料。本文就是探讨如何结合工程实际
情况,利用较少的经费获取较高精度的GPS 高程, 从而实现低成本、高效率、高质量的测量成果。 2常用高程系统的基本定义
大地高:大地高系统是以参考椭球面为基准面的高程系
统。某点的大地高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的距离。一般用H 表示。
正高:正高系统是以大地水准面为基准面的高程系统。某点的正高是该点到通过该点的铅垂线与大地水准面的交点之间的距离。一般用H 正高表示。
正常高:正常高系统是以似大地水准面为基准的高程系统。某点的正常高是该点到通过该点的铅垂
控制测量学国家高程基准
简要介绍资料的主要内容,以获得更多的关注
国家高程基准
布测全国统一的高程控制网,首先必须建立一个统一的高程基准面,所有水准测量测定的高程都以这个面为零起算,也就是以高程基准面作为零高程面。用精密水准测量联测到陆地上预先设置好的一个固定点,定出这个点的高程作为全国水准测量的起算高程,这个固定点称为水准原点。
5.1.1高程基准面
高程基准面就是地面点高程的统一起算面,由于大地水准面所形成的体形——大地体是与整个地球最为接近的体形,因此通常采用大地水准面作为高程基准面。
大地水准面是假想海洋处于完全静止的平衡状态时的海水面延伸到大陆地面以下所形成的闭合曲面。事实上,海洋受着潮汐、风力的影响,永远不会处于完全静止的平衡状态,总是存在着不断的升降运动,但是可以在海洋近岸的一点处竖立水位标尺,成年累月地观测海水面的水位升降,根据长期观测的结果可以求出该点处海洋水面的平均位置,人们假定大地水准面就是通过这点处实测的平均海水面。
长期观测海水面水位升降的工作称为验潮,进行这项工作的场所称为验潮站。 根据各地的验潮结果表明,不同地点平均海水面之间还存在着差异,因此,对于一个国家来说,只能根据一个验潮站所求得的平均海水面作为全国高程的统一起算面——高程基准面。
CPIII高程测量方法与精度
CPШ高程测量方法及精度 张军
| [<<] [>>]
轨道控制网CPⅢ是沿线路布设的三维控制网,起闭于基础平面控制网(CPⅠ)或线路控制网(CPⅡ)及线路水准基点,应在线下工程竣工,通过沉降变形评估后施测,为无砟轨道铺设和运营维护的三维基准。
无砟轨道铁路工程测量高程控制网为两级布设,第一级为线路水准基点控制网(二等),第二级为轨道控制网(CPⅢ)高程控制测量(精密)。所有CPⅢ平高共点。
1. 无砟轨道高程测量执行的标准及规范
(1)《客运专线无砟轨道铁路工程测量暂行规定》(铁建设[2006]189号);
(2)《国家一、二等水准测量规范》(GB/T 12897-2006);
(3)《国家三、四等水准测量规范》(GB 12898-91);
(4)《工程测量规范》(GB50026-2007); (5)《精密工程测量规范》(GB/T 15314-1994)。
2. 轨道控制网CPⅢ高程测量
2.1 CPⅢ
控制网测量设备
用于CPⅢ控制网高程测量的水准仪,标称精度应满足每公里水准测量往返测高差中数测量的中误差优于±0.3mm/km。
水准尺应采用整体因瓦水准标尺,与水准仪配套的尺垫,其重量应不低于3kg。与水准仪配套的脚架,应
水准闭合(高程闭合自动计算表格)施工现场实用记录测量表
施工现场常用自动计算表,准确,专业,附有使用说明
水准测量记录表测区名称: 测量等级: 仪器等级 : 天气情况:
测量小组:
观 测 者:
记 录 者:
测量日期:
测 站
点号
后视读数(m) 前视读数(m) 观测高差(m) 高差改正(m) 改正后高差(m)
高程(m)
2
FM1 1.000 FM2 1.300 FM3 1.000 FM4 1.540 FM5 1.200 FM6 1.800 FM7 1.200 FM8 1.120 FM9 1.400 FM1 1.240 1.200 1.510 1.340 1.400 1.400 1.300 1.130 1.200 -0.240 0.100 -0.510 0.200 -0.200 0.400 -0.100 -0.010 0.200 0.013333 0.020000 0.026667 0.033333 0.006667 0.020000 0.026667 0.006667 0.006667 -0.226667
已知点1.000
0.773 0.120000 0.893 -0.483333 0.410 0.233333 0.643 -0.193333 0.450 0.420000 0.870 -0.073333 0.7