动态规划原理与应用

“动态规划原理与应用”相关的资料有哪些?“动态规划原理与应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“动态规划原理与应用”相关范文大全或资料大全,欢迎大家分享。

动态规划原理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

动态规划的原理

1. 1.动态规划的基本理论

一.动态规划的术语

在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。在此先简要介绍动态规划中的常用术语。

级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n.

状态(λ):用来描述、刻画级的特征。状态可以是单变量,也可以时向量。在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。

状态空间(Λ):由全部系统可能存在的状态变量所组成。

决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。描述决策的变量称为决策变量。对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。决策变量x(λ)∈X(λ)。

变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。T(λ,x(λ))可分为两种类型,即确定型和不确定型。确定型的T(λ,x(λ))只含有一个元。不确定型指我们不能确切知道决策的结果,但作

动态规划应用举例 - 图文

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

南京航空航天大学 运筹学 课程论文

题目:动态规划应用举例

学号: 姓名: 完成日期:2013。5。16

摘 要

动态规划是解决最优控制的一种重要方法之一,算法的优点有:(1)易于确定全局最优解;(2)能得到一族解,有利于分析结果;(3)能利用经验,提高求解的效率。动态规划方法虽然存在许多不足之处,但随着计算机的日益普及,动态规划的应用越来越广泛,它能够巧妙地解决科学技术和实际生活中的许多实例。本文列举了一些典型例题,介绍了如何用动态规划去求解,不足之处是这些问题大多数都是确定型的,而对于连续型、随机型问题接触较少。 关键词:动态规划;应用;

正 文

一、 资源分配问题

所谓分配问题,就是将数量一定的一种或若干种资源(例如原材料、资金、机器设备、劳力、食品等等),恰当地分配给若干个使用者,而使目标函数为最优。

设有某种原料,总数量为a,用于生产n种产品。若分配数量xi用于生产第i种产品,其收益为gi(xi),问应如何分配,才能使生产n产品的总收入最大? 此问题可写成静态规划问题:

?max z?g1(x1)?g2(x2)???gn(xn)? ?x1?x2

动态规划基本原理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

动态规划基本原理

近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。

要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题

如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。

各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.

让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最短

图4-1 带权有向多段图

路径的长度(下面简称最短距离)。

我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D

动态规划

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

第七章 动态规划

习题七

7.1计算如图所示的从A到E的最短路线及其长度(单位:km):

(1) 用逆推解法; (2) 用标号法。 3 B1 4 D1 2 3 4 C1 3 A 2 B2 1 1 5 D2 1 E 3 3 C2 4 2 5 3 1 B3 5 3 D3

7.2 用动态规划方法求解下列问题

(1) max z =x12x2 x33

x1+x2+x3 ≤6

xj≥0 (j=1,2,3)

(2)min z = 3x12+4x22 +x32

x1x2 x3 ≥ 9

xj ≥0 (j=1,2,3)

7.3 利用动态规划方法证明平均值不等式:

(x1?x2???xn)?(x1x2?xn)n

n设xi ≥0,i=1,2,?,n。

7.4 考虑一个有m个产地和n个销地的运输问题。设ai(i=1,2,?,m)为产地i可发运的物资数,bj(j=1,2

动态规划

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

第五章 动态规划(Dynamic Programming)

第一节 离散时间系统的动态规划

一 简单例子 行车问题

穷举法:从S到F共有条路径,每条路径共有3次加法。故共有3?8?24,2n?1.(n?1) 次加法。 动态规划法:

首先计算最后阶段的时间最短的路径:x2(3)?F,可以计算出J(x1(3))=4,J(x2(3))=3 再计算第三阶段的最短路径:x1(2)?x2(3)?F可以计算出J(x1(2))+1+3,

J(x2(2))=2+3。只需要计算x1(2)到J(x1(3)),J(x2(3))及x2(2)到J(x1(3)),J(x2(3))的

最短时间。其中J(xi(.))代表xi(.)到F的最短距离。

然后计算第二阶段的最短路径:x2(1)?x1(2)?x2(3)?F,计算

x1(1?)x2?(2J)2x(和(2))x1(1)?x1(2)?J(x1(2)),取小的

J(x1(1))x2(1)?x1(2)?J(x1(2))和x2(1)?x2(2)?J(x2(2)),取小的J(x2(1))

最后计算第一阶段的最短路径:S?x2(1)?x1(2)?x2(3)?F,计算

S?x1(2)?J(x1(1))和S?x2(1)?J(x2(1)

动态规划

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

function [p_opt,fval]=dynprog(x,DecisFun,SubObjFun,TransFun,ObjFun) % x为状态变量,一列代表一个阶段的状态

% M_函数DecisFun(k,x)表示由阶段k的状态值x求出相应的允许决策集合 % M_函数SubObjFun(k,x,u)表示阶段k的指标函数

% M_函数TransFun(k,x,u)是状态转移函数,其中x是阶段k的状态值,u是其决策集合 % M_函数ObjFun(v,f)是第k阶段到最后阶段的指标函数,当ObjFun(v,f)=v+f时,输入ObjFun(v,f)可以省略

% 输出p_opt由4列组成,p_opt=[序号组,最优轨线组,最优策略组,指标函数值组]; % 输出fval是列向量,各元素分别表示p_opt各最优策略组对应始端状态x的最优函数值

k=length(x(1,:)); % k为阶段数 x_isnan=~isnan(x);

f_opt=nan*ones(size(x));

% f_opt为不同阶段、状态下的最优值矩阵,初值为非数

d_opt=f_opt;

动态规划习题

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

动态规划专题分类视图

数轴动规题: ........................................... 1 较复杂的数轴动规 ................................... 4 线性动规 ................................................... 7 区域动规: ............................................. 14 未知的动规: ......................................... 20 数轴动规题:

题1.2001年普及组第4题--装箱问题

【问题描述】有一个箱子容量为V(正整数,0≤V≤20000),同时有n个物品(0

第二行:一个整数,表示物品个数n;接下来n行,分别表示这n个物品的各自体积。 【输出格式】 输出文件box.out只有一行数据,该行只有一个数,表示最小的箱子剩余空间。 【输入样例】 24 6 8 3 12 7 9 7

【输出样例】 0

题2.1996年提高组第4题--砝码秤重 __数据加强版

【问题描述】设有n种砝码,第k种砝码有Ck

6动态规划

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

7.1多阶段决策过程及实例

在生产和科学实验中,有一类活动的过程,由于它的特殊性,可将过程分为若干个互相联系的阶段,在它的每一个阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成了一个决策序列,因而也就决定了整个过程的一条活动路线。这种把一个问题可看作是一个前后关联具有链状结构的多阶段过程(如图2-1所示)就称为多阶段决策过程,也称序贯决策过程。这种问题就称为多阶段决策问题。

决策状态1状态决策决策状态状态2n状态图7-1

在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前的状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义。因此,把处理它的方法称为动态规划方法。但是,一些与时间没有关系的静态规划(如线性规划、非线性规划等)问题,只要人为地引进“时间”因素,也可以把它视为多阶段决策问题,用动态规划方法去处理。

多阶段决策问题很多,现举例如下: 例1 最短路线问题

设某厂A要把一批货运到E城出售,中间可经过①~⑧城市,各城市间的交通线及距离如图2-2所示,问应选择什么

动态规划讲解

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

线性动规

LIS类型DP

【例题1】:最长不下降序列1078

Description:

设有整数序列b1,b2,b3,……,bm, 若存在i1< i2

第一行为一个数n,表示有n个数,第二行为n个整数序列; Output:

第一行为最大长度,第二行为满足长度的序列 Sample Input 14

13 7 9 16 38 24 37 18 4 19 21 22 63 15 Sample Output 8

7 9 16 18 19 21 22 63 【试题分析】

1、阶段和状态:

f[i]:表示以a[i]为最后一个数字的最长不下降序列的最大长度;

阶段i表示前i个数,由于每个阶段只有一个状态,所以用一维数组表示; 2、状态转移方程: 初始化:f[i]=1;

f[i]=max{f[j]+1,j

初始化: i a[i] f[i] 1 13 1 2 7 1 0 3 9 1 0 4 5 6 7 8 9 4 1 0 10 11 12 13 14 19 21 22 63 15 1 0 1 0 1 0 1 0 1 0 16 38 24 37 18 1 0 1 0 1 0 1 0 1 0 pre[i] 0

计算过程: i a[i] f[i]

动态规划2

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

JSOI2006江苏省青少年信息学奥林匹克集训队夏令营

动态规划初步

江苏省华罗庚中学 杨志军

一、引入

从一个例子说起: 【例题1】

设有一个三角形的数塔,顶点为根结点,每个结点有一个整数值。从顶点出发,可以向左走或向右走,如图所示: 13

11 8

12 7 26

6 14 15 8

12 7 13 24 11

从根结点13出发向左、向右的路径长度可以是: 13-11-7-14-7,其和为52 13-11-12-14-13,其和为63 若要求从根结点开始,请找出一条路径,使路径之和最大,若存在多条请输出任意一条。 【问题分析】

① 贪心法往往得不到最优解: 13 本题若采用贪心法则:13-11-12-14-13,其和为63 但存在另一条路:13-8-26-15-24,其和为86

11 8 贪心法问题所在:眼光短浅。

根据贪心法,则13-11-21和45,而实质上13-8-40和

6 21 40 61。

② 若用穷举法:从根结点开始,将所有可能的路径求和,找出最大值,但算法时间复杂性使问题解成为不可能。

当 N=1 P=1 N=2 P=2