抛物线与平行四边形综合题

“抛物线与平行四边形综合题”相关的资料有哪些?“抛物线与平行四边形综合题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“抛物线与平行四边形综合题”相关范文大全或资料大全,欢迎大家分享。

平行四边形在综合题中的应用(4)

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

2017年08月06日风的初中数学组卷

一.解答题(共25小题)

1.如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点. (1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标; (2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;

(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?

2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B. (1)求二次函数y=ax2+bx+c的表达式;

(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;

(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N

平行四边形

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

19.2 平行四边形(第一课时)

教学目标:

知识与技能:

1、理解并掌握平行四边形的定义;

2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力

过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理

的能力。

情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际

应用价值。

重点、难点:

重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.

教具准备:图片、三角板 课时安排:一课时 教学过程:

一、导入新课

引入:

等,都是平行四边形,平行四边形有哪些性质呢?

什么是平行四边形? 平行四边形的定义:

(1)定义: 两组对边分别平行的四边形叫做平行四边形。

在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本

(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”

平行四边形与特殊的平行四边形练习题勿删

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

平行四边形与特殊的平行四边形练习题

一、选择题

1.下列命题中,正确的是( )

A.平行四边形的对角线相等 B.矩形的对角线互相垂直 C.菱形的对角线互相垂直且平分 D.梯形的对角线相等

2.下列说法中,正确的是( ) A . 同位角相等

C . 四条边相等的四边形是菱形

∠1=∠2 A.

4.在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( ) 9 A. 24 A.

B. 16

C. 4

D. 2

第3题

这个四边形是平行四边形的是

A.AB//DC,AD//BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB//DC,AD=BC

10.如图2,点E是平行四边形ABCD的边CD的中点,AD、BE的延长线相交于点F,

DF=3,DE=2,则平行四边形ABCD的周长为

A. 5 B. 7 C.10

D. 14

B. 对角线相等的四边形是平行四边形 D. 矩形的对角线一定互相垂直

3.如图,在平行四边形ABCD中,下列结论中错误的是( )

B. ∠BAD=∠BCD

C. AB=CD

平行四边形复习与回顾

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

平行四边形复习与回顾

第六章 平行四边形复习与回顾(学案)

姓名: 班级: 成绩:

一、选择题

1、如图,在□ABCD中,下列结论中错误的是( ) ..

A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D. AC⊥BD

2、已知□ABCD的周长为32,AB=4,则BC= ( )

A.4 B. 12 C.24 D. 28

1题图

3、如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段EC的长度为( )

A.1 B.2 C. 3 D.4

4、如图,□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线

的和是( )

A.18 B. 28 C.36 D. 46

5、如图,在周长为20cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,

则△ABE的周长为( )

A.4cm B. 6cm C.8cm

多边形与平行四边形

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

宇轩图书

第五章 四边形

第 22 讲 多边形与平行四边形

目录

首页

上一页

下一页

末页

宇轩图书

考 点 知 识 精 讲 中 考 典 例 精 析

举 一 反 三

考 点 训 练

目录

首页

上一页

下一页

末页

宇轩图书

考 点 知 识 精 讲 中 考 典 例 精 析

考点一 多边形的概念与性质 1.定义:多边形的对角线是连结多边形不相邻的两个顶点的线段. n n-3 注意:从 n 边形的一个顶点出发可以引出(n-3)条对角线,共有 条对角线. 2 2.n 边形的内角和是(n-2)· 180° ,外角和是 360° .

举 一 反 三

考 点 训 练

目录

首页

上一页

下一页

末页

宇轩图书

考 点 知 识 精 讲 中 考 典 例 精 析

考点二 平面图形的密铺 1.密铺的定义 用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地 铺成一片,这就是平面图形的密铺,又称作平面图形的镶嵌. 2.平面图形的密铺 (1)一个多边形密铺的图形有:三角形,四边形和正六边形; (2)两个多边形密铺的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八 边形和正三角形和正十二边形; (3)三个图形密铺的图形一般有:正三角形、正方形和正六边形,正方

平行四边形复习讲义

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

中学1对1课外辅导专家

学科培训师辅导讲义

学员编号 学员姓名 课 题 备课时间 教学目标 重点、难点 年 级 辅导科目 七年级 数学 课时数 学科培训师 2 周老师 平行四边形复习讲义 2016年04月 14日 授课时间 2016年04月15日 掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。 1.平行四边形、矩形、菱形、正方形性质及判定的应用 2.相关知识的综合应用 特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之 一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及考点及考试要求 灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、 正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 教学内容 (1) 演变关系: (2) 从属关系: 1

成功不是凭梦想和希望,而是凭努力和实践

平行四边形教学方案

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

平行四边形(一)

【教学内容】

  教科书第70页例1、例2、练习十九1,3,4。

【教学目标】

1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

5.了解平行四边形在生活中的应用。

【教学重、难点】

教学重点:认识平行四边形及其特征。

教学难点:自己探索、发现、描述、应用平行四边形的特征。

【教学准备】

教具:课件,长方形、三角形活动框,磁性小棒。

学具:三角板,量角器,直尺,平行四边形

纸片(4人小组相同),小棒4根(两两等长)。

【教学过程】

一、    导入新课

 

1.     目标导学。

(1)           什么是平行四边形?

(2) 平行四边形

平行四边形 较难 题库

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

勾股定理 ?难度一般2 题库

1.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为( ).

5533A.2 B.210 C.10 10 D.5 10

2.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第n个正方形的边长为( )

nn﹣1A.n B.(n﹣1)2 C.(2) D.(2)

3.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝

22

隙).若①②③④四个平行四边形面积的和为14cm,四边形ABCD面积是11cm,则①②③④四个平行四边形周长的总和为( )

A.48cm B.36cm C.24cm D.18cm

4.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )

A. B.2 C.3 D.

5.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点

试卷第1页,总25页

C与点O重合,折痕MN恰好

平行四边形中考集锦

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

中考集锦

20.(2013福建龙岩,20,10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的

两点,∠1=∠2.

(1)求证:AE=CF;

(2)求证:四边形EBFD是平行四边形.

【答案】(1)证明:

(法一)如图①:∵四边形ABCD是平行四边形,

∴AD=BC,AD // BC,∠3=∠4,

∵∠1=∠3+∠5,∠2=∠4+∠6,

∠1=∠2,

∴∠5=∠6,

∴△ADE ≌△CBF,

∴AE =CF;

图① 图②

(法二)如图②,连接BD交AC于点O,

在平行四边形ABCD中,

OA=OC,OB=OD,

∵∠1=∠2,∠7=∠8,

∴△BOF ≌△DOE,

∴OE=OF,

∴OA-OE =OC-OF,

即:AE=CF.

(2)证明:

(法一)如图①,

∵∠1=∠2,

∴DE // BF,

∵△ADE ≌△CBF,

∴DE=BF,

∴四边形EBFD是平行四边形.

(法二)如图②

∵OE=OF,OB=OD,

∴四边形EBFD是平行四边形.

15.(2013福建泉州,15,4分)如图,顺次连结四边形 ABCD 四边的中点 E、F、G、H,则四边形 EFGH 的形状一定是 .

【答案】 平行四边形

16.(2013福建泉州,16,4分) 如图,菱形ABCD

的周长为

《平行四边形》教学设计

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

《平行四边形及性质》

教学设计

博罗县罗浮中学 陈万意

《平行四边形及性质》教学设计

【教材】人教版义务教育课程标准实验教科书八年级下册19.1平行四边形的性质 【课时安排】共2课时 这是第1课时 【教学对象】八年级学生 【授课教师】陈万意 【教材分析】

四边形是现实生活中的常见图形,是平面几何中最基本的平面图形之一。本章的学习,既是前面所学的平行线、相交线,全等三角形,图形的平移、旋转、轴对称等知识的回顾与延伸,又是后续学习特殊的平行四边形、梯形、相似形等知识的基础 【学情分析】

首先,学生在小学四年级(下)的数学学习中,学生已经认识了平行四边形,知道了平行四边形的定义及面积公式,会用三角板等画平行四边形。在七年级和八年级上册的学习中,已为本章的学习做了铺垫,系统学习了平行线和相交线的有关几何知识,还学习了全等三角形的性质和判别方法、图形的平移、旋转、轴对称等知识。并在学习中积累了必要的探究活动、合作交流的经验。对几何图形的认识、图形的变换有了初步的认识,对转化思想也有一定的体验,为探究并掌握平行四边形的性质做了知识和经验准备。

同时,八年级的学生已经具备简单的几何推理能力,认知发展处于从合情推理阶段到演绎推理阶段的过渡,数学