高中数学选修公式总结理科
“高中数学选修公式总结理科”相关的资料有哪些?“高中数学选修公式总结理科”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学选修公式总结理科”相关范文大全或资料大全,欢迎大家分享。
理科高中数学公式汇总
高中数学基础知识公式 第一章 集合与简易逻辑 1、 集合
(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。 集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。 (2)、集合的表示法:列举法()、描述法()、图示法();
(3)、集合的分类:有限集、无限集和空集(记作?,?是任何集合的子集,是任何非空集合的真子集);
(4)、元素a和集合A之间的关系:a∈A,或a?A;
(5)、常用数集:自然数集:N ;正整数集:N;整数集:Z ;整数:Z;有理数集:Q;实数集:R。 2、子集
(1)、定义:A中的任何元素都属于B,则A叫B的子集 ;记作:A?B, 注意:A?B时,A有两种情况:A=φ与A≠φ
(2)、性质:①、A?A,??A;②、若A?B,B?C,则A?C;③、若A?B,B?A则A=B ; 3、真子集
(1)、定义:A是B的子集 ,且B中至少有一个元素不属于A;记作:A?B; (2)、性质:①、A??,??A;②、若A?B,B?C,则A?C; 4、补集
①、定义:记作:CUA?{x|x?U,且x?A};
②、性质:A?CUA??,A?CUA?U,
《高中数学常用公式总结》
《高中数学常用公式总结》 1、元素与集合的关系 2 、集合
的子集个数共有
个;真子集有 个.
个;
非空子集有个;非空的真子集有
3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式 : 坐标
时,设为此式)
(当已知抛物线与轴的交
时,设为此式)
。(当已知抛物线与直
(当已知抛物线的顶点
(3) 零点式: 点坐标为 (4)切线式: 线
相切且切点的横坐标为 时,
设为此式)
4、 真值表: 同真且真,同假或假
5 、常见结论的否定形式;
6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)
充要条件: (1) 要条件;
(2)
且q ≠> p,则P是q的充分不必要条件;
,则P是q的必要不充分条
则P是q的充分条件,反之,q是p的必
(3) p ≠> p ,且 件;
(4)p ≠> p ,且
则P是q的既不充分又不必要条件。
7、 函数单调性:
增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在 若对任意的 则就叫
减函数:(1)、文字描述是:y随x的增大而减小。
高中数学基础公式及总结大全
袁轲教学资料(高中数学)
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A.
2.德摩根公式
CU(AB)?CUACUB;CU(AB)?CUACUB.
3.包含关系
AB?A?AB?B?A?B?CUB?CUA
?ACUB???CUAB?R
4.容斥原理
card(AB)?cardA?cardB?card(AB)
card(ABC)?cardA?cardB?cardC?card(AB)
?card(AB)?card(BC)?card(CA)?card(ABC).
5.集合{an1,a2,,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2空的真子集有2n–2个.
6.二次函数的解析式的三种形式 (1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
N?f(x)?M?[f(x)?M][f(x)?N]?0
?|f(x)?M?Nf(x)?N2|?M?N2?M?f(x)?0
1
1个;非
–袁轲教学资料(高中数学)
?11?
高中数学常用公式法则小总结
袁轲教学资料(高中数学)
高中数学常用公式法则小总结
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式 N?f(x)?M?[f(x)?M][f(x)?N]?0
?|f(x)??M?N2|?M?N2?f(x)?NM?f(x)?0
1f
高中数学选修知识点总结
数学选修2-1
第一章:命题与逻辑结构 知识点:
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。若原命题为“若p,则q”,它的逆命题为“若q,则p”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若 p,则 q”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若p,则q”,则它的否命题为“若 q,则 p”。
6、四种命题的真假性:
原命题 逆命题 真 真 真 假 假 真 假 假
四种命题的真假性之间的关系:
否命题 真 假 真 假
逆否命题
真 真 假 假
1 两个命题互为逆否命题,它们有相同的真假性
高中数学选修知识点总结
数学选修2-1
第一章:命题与逻辑结构 知识点:
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。若原命题为“若p,则q”,它的逆命题为“若q,则p”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若 p,则 q”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若p,则q”,则它的否命题为“若 q,则 p”。
6、四种命题的真假性:
原命题 逆命题 真 真 真 假 假 真 假 假
四种命题的真假性之间的关系:
否命题 真 假 真 假
逆否命题
真 真 假 假
1 两个命题互为逆否命题,它们有相同的真假性
高中数学公式汇总
1. 2.3.4.集合
个.
,.
.
的子集个数共有
个;真子集有
个;非空子集有
个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式(2)顶点式(3)零点式4切线式:设为此式 6.解连不等式
常有以下转化形式
;
;当已知抛物线的顶点坐标
时,设为此式
时,设为此式
时,
;当已知抛物线与轴的交点坐标为
。当已知抛物线与直线
相切且切点的横坐标为
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值 二次函数具体如下: (1)当a>0时,若
,则
;
在闭区间
上的最值只能在
处及区间的两端点处取得,
,,.
(2)当a<0时,若,则,
若
9.一元二次方程
,则,
=0的实根分布
1
.
1方程2方程
在区间在区间
内有根的充要条件为内有根的充要条件为
或;
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。
的子区间
。
(3) 在给定区间
。
(4) 在给定区间
。
对于参数及函数若若函数11.真值表 p q 真 真 真 假 假 真 假 假
2
,,不同上含参数的不等式(为参
数)恒成立的充要条件是(2)在给定区间
上含参数的不等式(为参数)恒成立的充要条件是
的子区间上
高中数学公式汇总
皖西学院 计算机网络 程 坤
高中数学第一章-集合
榆林教学资源网 http://www.ylhxjx.com 考试内容:
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件. 考试要求: 榆林教学资源网 http://www.ylhxjx.com
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑 知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:
①任何一个集合是它本身的子集,记为A?A; ②空集是任何集合的子集,记为??A; ③空集是任何非空集合的真子集; 如果A?B,同时B?A,那么A = B. 如果A?B
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8