金属学与热处理知识点
“金属学与热处理知识点”相关的资料有哪些?“金属学与热处理知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“金属学与热处理知识点”相关范文大全或资料大全,欢迎大家分享。
金属学与热处理
第二章 金属及合金的回复于再结晶
1回复:是指冷塑性变形的金属在加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。 2回复的机制
一般认为,回复是空位和位错在退火过程中发生运动,从而改变了它们的数量和组态的过程。 1) 低温回复: 低温回复主要与点缺陷(空位和间隙原子)的迁移有关。点缺陷运动的结果,使点缺陷密度明显下降。
2) 中温回复:加热温度稍高时,会发生位错运动和重新分布。回复的机制主要与位错的滑移有关,同一滑移面上的异号位错可以相互吸引而抵消。
3) 高温回复:高温时,刃型位错可获得足够能量产生攀移,发生多边化(或多边形化)。 3多边化:冷变形金属加热时,原来处在滑移面上的位错通过攀移和滑移,形成与滑移面垂直的亚晶界的过程。
多边化的驱动力:弹性应变能的降低。
4再结晶:冷变形后的金属加热到一定温度或保温足够时间后,在原来的变形组织中产生了无畸变的新晶粒,位错密度显著降低,性能也发生显著变化,并恢复到冷变形前的水平,这个过程称为再结晶。
再结晶的驱动力:储存能的降低(与回复的驱动力相同)。
5再结晶温度:经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成再结晶(>95%转
金属学与热处理总结
金属学与热处理总结
一、金属的晶体结构
重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶格类型 体心立方 面心立方 密排六方 晶格类型 间隙类型 间隙个数 原子半径rA 间隙半径rB 晶胞中的原子数 2 4 6 原子半径 3424配位数 8 12 12 致密度 68% 74% 74% a a 12a fcc(A1) 正四面体 正八面体 四面体 bcc(A2) 扁八面体 hcp(A3) 四面体 正八面体 8 2a44 ?2?2?a412 3a46 ?2?3?a4?12 a26 ?2?1a2?3?2a4? ?5?3?a46?2a4? ? 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规
金属学与热处理总结
金属学与热处理总结
一、金属的晶体结构
重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶格类型 体心立方 面心立方 密排六方 晶格类型 间隙类型 间隙个数 原子半径rA 间隙半径rB 晶胞中的原子数 2 4 6 原子半径 3424配位数 8 12 12 致密度 68% 74% 74% a a 12a fcc(A1) 正四面体 正八面体 四面体 bcc(A2) 扁八面体 hcp(A3) 四面体 正八面体 8 2a44 ?2?2?a412 3a46 ?2?3?a4?12 a26 ?2?1a2?3?2a4? ?5?3?a46?2a4? ? 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规
金属学与热处理习题
第一章 金属的晶体结构
(一).填空题
1.同非金属相比,金属的主要特性是__________
2.晶体与非晶体的最根本区别是__________ 3.金属晶体中常见的点缺陷是__________ ,15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,
0,1/2)三点,这个晶面的晶面指数为__________ . 16.在立方晶系中,某晶面在x轴上的截距为2,
在y轴上的截距为1/2;与z轴平行,则该晶面指数为__________ .
最主要的面缺陷是__________ 。
4.位错密度是指__________ ,其数学表达式为__________ 。
5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。
7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。
8.实际金属存在有_____
金属学-知识点
金属是具有正的电阻温度系数的物质,其电阻随温度的升高而增加。
晶体的三个特性:原子按一定的规律周期性地重复排列着;具有一定的熔点;各向异性(异向性)
空间点阵:由这些阵点有规则地周期性重复排列所形成的三维空间阵列。 晶格:将阵点用直线连接起来形成空间格子 晶格常数/点阵常数:晶胞的棱边长度
布拉菲点阵:14种类型,7个晶系,常见类型:体心立方结构a-Fe Cr V、面心立方结构r-Fe Cu Ni、密排六方结构 Zn Mg Be
配位数:晶体结构中与任一个原子最近邻、等距离的原子数目 致密度:原子排列的紧密程度,原子所占体积与晶胞体积之比。 晶向指数和晶面指数——画图
晶向族:原子排列相同但空间位向不同的所有晶向
晶向[uvw]与晶面(hkl)平行 hu+kv+lw=0 垂直 u=h v=k w=l 晶面间距公式P17
伪等向性:多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性。 晶体缺陷:点、线、面缺陷。
点缺陷:1、原子迁移到晶体的表面上,肖脱基空位。2、迁移到晶格间隙中,弗兰克尔空位 刃型位错:柏氏矢量与位错线垂直。螺型位错:柏氏矢量与位错线平行 晶体内部位错线是封闭的
晶界特性:高
金属学和热处理
第一章 金属的晶体结构 1.这种原子在三维空间作有规则的周期性重复排列的物质称为晶体。
2.晶体与非晶体的区别不在外形,主要在于内部的原子排列情况;先,晶体具有一定的熔点;晶体的另一个特点是在不同方向三测量其性能时,表现出各向异性或异向性。 3.最典型最常见的金属晶体结构有3种类型:体心立方结构,面心立方结构和密排六方结构。
4.体心立方晶格:除了在晶胞的八个角上各有一个原子外,原子: 原子半径r a,
原子数8x1/8+1=2,配位数4(所
谓配位数是指晶体结构中与任一个
原子最近邻、等距离的原子数)为8;致密度(原子排列的紧密程度可用原子所占体积与晶胞
体积之比表示)k nV
15.面心立方品格和密排六方
V
晶格的:原子半径,原子数,配位数,致密度
6.晶向指数的确定,晶向族包括的晶向;
7.晶面指数的确定,晶面族包括的晶面。
8.在实际应用的金属材料中,总是不可避免的存在着一些原子偏离规则排列的不完整性区域,
这就是晶体缺陷。
9.根据晶体缺陷的几何特征,可以分为以下三类: 1)点缺陷:空位、间隙原子和置换原子
2)线缺陷:最简单、最基本的类型有两种:刃型位错、螺型位错。 3)面缺陷:包括晶体的外表面和内界面两类, 10.晶体结构相同但
金属学与热处理复习资料
考试必过!
金属:具有正的电阻温度特性的物质。 晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。原子排列规律不同,性能也不同。
点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点 ( 原子、分子或离子 ) 忽略,抽象成纯粹几何点,称为阵点或节点。为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。这种用以描述晶体中原子 相晶体结构与组成合金的某一组元相同,这种相称固溶体
化合物:是构成的组元相互作用,生成不同与任何组元晶体结构的新物质
相图:是表示合金系中合金的状态与温度、压力与成分之间关系的一种图解。又称状态图或平衡图。
表象点:位于相图中,并能表示合金成分、温度的点称表象点。
吉布斯相律:相律是表示平衡条件下,系(分子或离子) 排列规律的空间格架称为空间点阵,简称点阵或晶格。
晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。这个用以完全反映晶格特征最小的几何单元称为晶胞。
多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。
空位:
金属学与热处理复习题
一、名词解释:
金属 晶体 非晶体 位错 金属键 晶格 晶胞 晶向 晶向指数 晶面 晶面指数 同素异晶转变 单晶体 多晶体 非晶态金属 晶界 相界 亚晶界 固溶体 置换固溶体 间隙固溶体 置换原子 间隙原子 间隙化合物 间隙相 凝固 结晶 临界晶核半径 临界形核功 临界过冷度 成分过冷 光滑界面 粗糙界面 形核率 结构起伏 能量起伏 过冷度 成分起伏 均勺形核 非均勺形核 变质处理 相 相图 金属化合物 加工硬化 白口铸铁 奥氏体 珠光体 铁素体 滑移 孪生 临界分切应力 变形织构 制耳 回复 再结晶 二次再结晶 扩散 淬火 调质处理 回火 回火脆性 钢中马氏体 淬透性 淬硬性 低温莱氏体 二次渗碳体 晶体缺陷 伪共晶 离异共晶 伪共析 形变热处理 冷加工 热加工 枝晶偏析 柯氏气团 惯习面 可锻铸铁 灰口铸轶 球墨铸铁 蠕墨铸铁 蠕变 蠕变极限 持久强度
二、填空题:
1.三种典型的金属晶体结构为 , , 。
2.设从坐标原点所引一有向直线上有一点的坐标x、y、z分别为3、2、-1,则该直线所代表的晶向的晶向指数为 。 3.设有一晶面和坐标轴x、y
金属学与热处理复习资料
考试必过!
金属:具有正的电阻温度特性的物质。 晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。原子排列规律不同,性能也不同。
点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点 ( 原子、分子或离子 ) 忽略,抽象成纯粹几何点,称为阵点或节点。为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。这种用以描述晶体中原子 相晶体结构与组成合金的某一组元相同,这种相称固溶体
化合物:是构成的组元相互作用,生成不同与任何组元晶体结构的新物质
相图:是表示合金系中合金的状态与温度、压力与成分之间关系的一种图解。又称状态图或平衡图。
表象点:位于相图中,并能表示合金成分、温度的点称表象点。
吉布斯相律:相律是表示平衡条件下,系(分子或离子) 排列规律的空间格架称为空间点阵,简称点阵或晶格。
晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。这个用以完全反映晶格特征最小的几何单元称为晶胞。
多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。
空位:
《金属学及热处理》课程
《金属学及热处理》课程简介
1、课程代码
2、课程名称
金属学及热处理 3、授课对象
材料成型及控制专业本科生 4、学分
4 5、修读期
第5学期 6、课程组负责人
夏力讲师、梁夏讲师、雷燕讲师 7、课程简介
本课程由物理冶金基本原理、钢的热处理、工程材料三大部分组成。开设本课程的目的在于为相关专业课程的学习及其未来实际应用材料打好良好的材料科学理论基础。课程的基本任务是:阐明典型晶体结构的基本特征及其性质、相与组织的基本特征和相转变过程及其机理、晶体中原子扩散的规律和途径及其影响因素、各类晶体缺陷的特点和形成规律及其对性能的影响、晶体材料的塑性变形行为和微观机理以及在热变形过程中材料内部发生的变化及其对性能的影响,钢的热处理原理及工艺,常用工程材料。课程教学的目的在于将材料成分、结构、组织变化的微观机理与材料的设计和加工工艺及其应用结合起来,以培养学生未来应用材料科学基础理论知识,了解材料、设计材料、加工材料、使用材料、测试分析材料、评估材料和解决材料实际问题的能力。 8、实践环节学时与内容或辅助学习活动
金属学及热处理综合实验2周
9、课程考核
平时:30%(课后作业+课后报告),考试:70%。 10、指定教材
《金属学与热处理