大一第一学期语文期末考试题
“大一第一学期语文期末考试题”相关的资料有哪些?“大一第一学期语文期末考试题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大一第一学期语文期末考试题”相关范文大全或资料大全,欢迎大家分享。
大一第一学期语文期末考试
一、背诵篇 滕文公 节选
居天下之广居,立天下之正位,行天下之大道。得志,与民由之,不得志,独行其道。富贵不能淫,贫贱不能移,威武不能屈。此之谓大丈夫。
诗经.周南.桃夭
桃之夭夭,灼灼其华。之子于归,宜其室家。 桃之夭夭,有蕡其实。之子于归,宜其家室。 桃之夭夭,其叶蓁蓁。之子于归,宜其家人。
邶风.击鼓
击鼓其镗,踊跃用兵。土国城漕,我独南行。 从孙子仲,平陈与宋。不我以归,忧心有忡。 爰居爰处?爰丧其马?于以求之? 于林之下。 死生契阔,与子成说。执子之手,与子偕老。 于嗟阔兮,不我活兮。于嗟洵兮,不我信兮。
登金陵凤凰台----李白 凤凰台上凤凰游,凤去台空江自流。 吴宫花草埋幽径,晋代衣冠成古丘。 三山半落青天外,二水中分白鹭洲。 总为浮云能蔽日,长安不见使人愁。
永遇乐----李清照
落日熔金,暮云合璧,人在何处?染柳烟浓,吹梅笛怨,春意知几许?元宵佳节,融和天气,次第岂无风雨?来相召、香车宝马,谢他酒朋诗侣。
中州盛日,闺门多暇,记得偏重三五。铺翠冠儿,捻金雪柳,簇带争济楚。如今憔悴,风鬟霜鬓,怕见夜间出去。不如向、帘儿底下,听人笑语。
二、简答题 (一)红楼梦
1.《红楼梦》金玉良缘的制造者薛姨妈沉不住气了,于是表演了
大一上学期(第一学期)高数期末考试题
大一上学期高数期末考试
一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. 设f(x) cosx(x sinx),则在x 0处有(
).
(A)f (0) 2 (B)f (0) 1(C)f (0) 0 (D)f(x)不可导.
2. 设 (x) 1 x
1 x, (x) 3 3x,则当x 1时( )
.
(A) (x)与 (x)是同阶无穷小,但不是等价无穷小; (B) (x)与 (x)是等价无穷小;
(C) (x)是比 (x)高阶的无穷小; (D) (x)是比 (x)高阶的
无穷小.
3. 若
F(x) x
(2t x)f(t)dt
,其中f(x)在区间上( 1,1)二阶可导且
f (x) 0,则( ).
(A)函数F(x)必在x 0处取得极大值; (B)函数F(x)必在x 0处取得极小值;
(C)函数F(x)在x 0处没有极值,但点(0,F(0))为曲线y F(x)的拐点;(D)函数F(x)在x 0处没有极值,点(0,F(0))也不是曲线y F(x)的拐点。1
4.
设f(x)是连续函数,且 f(x) x 2 0
f(t)dt , 则f(x) (
x2x2
(A)2 (B)2 2
(C)x 1 (D)x 2.
二、填空题(
大一(第一学期)高数期末考试题及答案
东西不错
大一上学期高数期末考试
一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. 设f(x) cosx(x sinx),则在x 0处有(
).
(A)f (0) 2 (B)f (0) 1(C)f (0) 0 (D)f(x)不可导.
2. 设 (x) 1 x
1 x, (x) 3 3x,则当x 1时( )
.
(A) (x)与 (x)是同阶无穷小,但不是等价无穷小; (B) (x)与 (x)
是等价无穷小;
(C) (x)是比 (x)高阶的无穷小; (D) (x)是比 (x)高阶的无穷小.
3. 若
F(x) x
(2t x)f(t)dt
,其中f(x)在区间上( 1,1)二阶可导且
f (x) 0,则( ).
(A)函数F(x)必在x 0处取得极大值; (B)函数F(x)必在x 0处取得极小值;
(C)函数F(x)在x 0处没有极值,但点(0,F(0))为曲线y F(x)的拐点; (D)函数F(x)在x 0处没有极值,点(0,F(0))也不是曲线y F(x)的拐点。
1
4.
设f(x)是连续函数,且 f(x) x 2 0
f(t)dt , 则f(x) (
x2x2
(A)2 (B)2 2
(C)x 1 (D)x 2.
大一上学期(第一学期)高数期末考试题(有答案)
大一上学期高数期末考试
一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. 设f(x)?cosx(x?sinx),则在x?0处有( ).
(A)f?(0)?2 (B)f?(0)?1(C)f?(0)?0 (D)f(x)不可导.
2. 设?(x)?1?x1?x,?(x)?3?33x,则当x?1时( ).
(A)?(x)与?(x)是同阶无穷小,但不是等价无穷小; (B)?(x)与?(x)是等价无穷小;
(C)?(x)是比?(x)高阶的无穷小; (D)?(x)是比?(x)高阶的无穷小.
3. 若
F(x)??x0(2t?x)f(t)dt,其中f(x)在区间上(?1,1)二阶可导且
f?(x)?0,则( ).
(A)函数F(x)必在x?0处取得极大值; (B)函数F(x)必在x?0处取得极小值;
(C)函数F(x)在x?0处没有极值,但点(0,F(0))为曲线y?F(x)的拐点; (D)函数F(x)在x?0处没有极值,点(0,F(0))也不是曲线y?F(x)的拐点。
设f(x)是连续函数,且 f(x)?x?2?14.
0f(t)dt , 则f(x)?(x2x2(A)2 (B)2?2(C)
大一上学期高数期末考试题
高数期末考试
一、填空题(本大题有4小题,每小题4分,共16分)
1. 已知
cosx
是f(x)的一个原函数,x
则 f(x)
cosx
dx x
2
2 2.
nlim
n
(cos2
n cos2n 1n
cosn ) .
12
x2arcsinx 1
3. -
11 x
2
dx2
.
二、单项选择题 (本大题有4小题, 每小题4分, 共16分)
设 (x)
1 x
4. 1 x, (x) 3 3x,则当x 1时( ).
(A) (x)与 (x)是同阶无穷小,但不是等价无穷小; (B) (x)与 (x)是等价无穷小;
(C) (x)是比 (x)高阶的无穷小; (D) (x)是比 (x)高阶的
无穷小.
5. 设f(x) cosx(x sinx),则在x 0处有( ).
(A)f (0) 2 (B)f (0) 1(C)f (0) 0 (D)f(x)不可导.
6. 若
F(x) x
(2t x)f(t)dt
,其中f(x)在区间上( 1,1)二阶可导且
f (x) 0,则( ).
(A)函数F(x)必在x 0处取得极大值; (B)函数F(x)必在x 0处取得极小值;
(C)函数F(x)在x 0处没有极值,但点(0,F(0))为曲线y F(x)的拐点; (D)函数
大一上学期高数期末考试题
大一上学期高数期末考试卷
一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. 设f(x)?cosx(x?sinx),则在x?0处有( ).
(A)f?(0)?2 (B)f?(0)?1(C)f?(0)?0 (D)f(x)不可导.
2. 设?(x)?1?x1?x,?(x)?3?33x,则当x?1时( ).
(A)?(x)与?(x)是同阶无穷小,但不是等价无穷小; (B)?(x)与?(x)是等价无穷小;
(C)?(x)是比?(x)高阶的无穷小; (D)?(x)是比?(x)高阶的无穷小.
3. 若
F(x)??x0(2t?x)f(t)dt,其中f(x)在区间上(?1,1)二阶可导且
f?(x)?0,则( ).
(A)函数F(x)必在x?0处取得极大值; (B)函数F(x)必在x?0处取得极小值;
(C)函数F(x)在x?0处没有极值,但点(0,F(0))为曲线y?F(x)的拐点;(D)函数F(x)在x?0处没有极值,点(0,F(0))也不是曲线y?F(x)的拐点。
14.
设f(x)是连续函数,且 f(x)?x?2?0f(t)dt , 则f(x)?(x2x2(A)2 (B)2?2(C)
大一管理学期末考试题
一、 单选题(每小题3分,共18分)
1.管理的核心是( D )
A.决策 B.领导 C.激励 D.处理好人际关系
2.霍桑实验的结论中对职工的定性是( B )
A.经济人 B.社会人 C.自我实现人 D.复杂人
3.古典管理理论阶段的代表性理论是( A )
A.科学管理理论 B 行政组织理论C.行为科学理论 D.权变理论
4.直线型组织结构一般只适用于( B )
A.需要按职能专业化管理的小型组织 B.没有必要按职能实现专业化管理的小型组织 C.需要按职能专业化管理的中型组织 D.需要按职能专业化管理的大型组织
5.双因素理论中的双因素指的是( D )
A.人和物的因素 B.信息与环境 C. 自然因素和社会因素 D.保健因素与激励因素
6.专业化管理程度高,但部门之间协调性比较差,并存在多头领导现象.这是哪类组织结构类型的特点?(B)
A.直线制 B.职能制 C直线职能制 D.事业部制 E.矩阵制
二、判断题(每小题2分,共20分)
1.权变理论是基于自我实现人假设提出来的. (×)
2.需求层次论是激励理论的基础理论。 ( √ )
3.决策最终选择的一般只是满意方案,而不是最优方案。 ( √ )-
4.管理幅度是指一个管理者直接指挥下级的数目. 管理幅度应该适当
大一高数期末考试题(精)
二、填空题(本大题有4小题,每小题4分,共16分)
1. 2. 3.
lim(1?3x)x?02sinx? .
已知cosx是f(x)的一个原函数,x .
则?f(x)?cosxdx?x
n??12lim?n(cos2?n?cos22?n?1???cos2?)?nn . ?4.
-x2arcsinx?11?x2dx? . 三、解答题(本大题有5小题,每小题8分,共40分)
12x?yy?y(x)e?sin(xy)?1确定,求y?(x)以及y?(0). 5. 设函数由方程
1?x7求?dx.7x(1?x)6.
?x? 1?xe, x?0设f(x)?? 求?f(x)dx.?32??2x?x,0?x?17.
18.
设函数
f(x)连续,
g(x)??f(xt)dt0,且
limx?0f(x)?Ax,A为常数. 求
g?(x)并讨论g?(x)在x?0处的连续性.
9.
求微分方程xy??2y?xlnx满足
大一高数期末考试题(精)
. 高等数学I 解答
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)
(本大题有4小题, 每小题4分, 共16分)
1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是无穷小.
(A) ()()x x βα+ (B) ()()x x 22βα+
(C) [])()(1ln x x βα?+ (D) )()
(2x x βα
2. 极限a
x a x a x -→??? ??1
sin sin lim 的值是( C ).
(A ) 1 (B ) e (C ) a
e cot (D ) a
e tan
3. ?????=≠-
+=00
1
sin )(2x a x x
e x x
f ax 在0x =处连续,则a =( D ).
(A ) 1 (B ) 0 (C ) e (D ) 1-
4. 设)(x f 在点x a =处可导,那么=
--+→h h a f h a f h )
2()(lim 0( A ).
(A ) )(3a f ' (B ) )(2a f '
(C) )(a f ' (D ) )
(3
大一高数期末考试题(精)
. 高等数学I 解答
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)
(本大题有4小题, 每小题4分, 共16分)
1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是无穷小.
(A) ()()x x βα+ (B) ()()x x 22βα+
(C) [])()(1ln x x βα?+ (D) )()
(2x x βα
2. 极限a
x a x a x -→??? ??1
sin sin lim 的值是( C ).
(A ) 1 (B ) e (C ) a
e cot (D ) a
e tan
3. ?????=≠-
+=00
1
sin )(2x a x x
e x x
f ax 在0x =处连续,则a =( D ).
(A ) 1 (B ) 0 (C ) e (D ) 1-
4. 设)(x f 在点x a =处可导,那么=
--+→h h a f h a f h )
2()(lim 0( A ).
(A ) )(3a f ' (B ) )(2a f '
(C) )(a f ' (D ) )
(3