等腰三角形教学设计
“等腰三角形教学设计”相关的资料有哪些?“等腰三角形教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“等腰三角形教学设计”相关范文大全或资料大全,欢迎大家分享。
等腰三角形讲义1
讲义
等腰三角形
撰稿:徐长明 审稿:张扬 责编:孙景艳
一、 目标认知 学习目标:
通过观察发现等腰三角形的性质;掌握等腰三角形的识别方法,会用等腰三角形的性质进行简单的计算和证明;理解等腰三角形与等边三角形的相互关系;能够利用等腰三角形的识别方法判断等腰三角形;掌握等边三角形的特征和识别方法;掌握一般文字命题的解题方法
重点:
等腰三角形的性质与判定。
难点:
比较复杂图形、题目的推理证明
二、 知识要点梳理
知识点一:等腰三角形、腰、底边
有两边相等的三角形叫等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角
如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.
知识点二:等腰三角形的性质
1、性质1:等腰三角形的两个底角相等(简称“等边对等角”).
性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).
2、这两个性质证明如下:
在△ABC中,AB=AC,如图所示.
讲义
作底边BC的高AD,则有
∴ Rt△ABD≌Rt△ACD.
∴ ∠B=∠C,∠1=∠2.BD=CD. 于是性质1、性质2均得证. 3、说明:
(1)①等
等腰三角形说课稿
等腰三角形说课稿
各位评委老师大家好,我是来应聘初中数学的X号考生。我今天抽到的题目是等腰三角形________(板书),我将主要从说教材,说学情,说学法、教法,说教学过程和说板书设计五个部分对本堂课的教学进行说明。 一 说教材
(一)教材的地位与作用
本节教材是人教版初中数学 ____八年级 上册第___十二章第___一节第一课时的内容,是初中数学的重要内容之一。主要学习等腰三角形等边对等角和等腰三角形的三线合一两个性质一方面,这是学生在学习了____轴对称性以及学习了全等三角形的判定的基础上对_三角形知识___的进一步深入和拓展;另一方面,又为学习_等边三角形和证明角相等,线段相等及两直线互相垂直___ 等知识奠定了基础,是进一步研究三角形____的工具性内容。因此本节课在教材中具有承上启下的作用。 (二)教学目标
根据对教材地位与作用的分析。在新课程改革理念的指导下,我制定了如下的三维教学目标:
1.知识与技能:理解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断和计算 2过程与方法
培养学生自主探索学习、协作学习以及分析
等腰三角形的判定教学设计
13.3.2等腰三角形的判定教学设计
一、教材分析
本课是华东师大版数学八年级上册第十三章第三节第二课时的内容,是学生在已有的全等的证明、命题、轴对称以及等腰三角形的性质基础上的进一步探究,等腰三角形的判定揭示了同一个三角形的边、角关系,与等腰三角形的性质定理互为逆定理,它为我们提供了证明两条线段相等的新方法,为以后的学习提供了新的证明和计算依据,是解题论证的必备知识,因此,本节内容至关重要。
二、学情分析
学生在学习了全等的证明,轴对称及等腰三角形的性质的基础上,对等腰三角形已有了一定的了解和认识,会利用全等来证明边、角相等,为验证判定定理奠定了基础。初二学生观察、操作、猜想能力较强,但推理、归纳、运用数学的意识和思想比较薄弱,思维的广阔性、敏捷性、严密性、灵活性比较缺乏,自主探究和合作学习能力也需要在课堂教学中进一步的加强和引导。
三、教学目标
(一)知识与能力:
1、会阐述、推证等腰三角形的判定定理。
2、学会比较等腰三角形的性质定理与判定定理的联系与区别。 (二)过程与方法:
通过学习等腰三角形的判定,进一步发展学生的抽象概括能力。 (三)情感、态度与价值观:
1
经历综合应用等腰三角形性质定理和判定定理的过程,体验数学 的应用价值。
《等腰三角形的判定》教学设计
《13.3等腰三角形——等腰三角形的判定》教学设计
一、内容与内容解析
1.内容
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边相等(等角对等边).
2.内容解析
三角形的研究思路是:从三角形的定义出发,先研究一般三角形的性质(边、角、三线是数量关系和位置关系),在研究三角形的特例(等腰三角形和直角三角形),在研究三角形的特例时,同样是从定义出发,研究其性质(边、角、三线性质)和判定(从性质定理的逆命题出发,提出猜想,并加以证明),这种图形特例研究具有典型性.“等角对等边”这一判定定理是从角的相等关系得到边的相等关系,是证明线段相等的又一重要工具,是本课的重点,也是本章的重点.
二、目标与目标解析
1.目标
(1)探索并证明“等边对等角”定理.
(2)掌握等腰三角形的判定定理:三角形中,等角对等边.
2.目标解析
达成目标(1)的标志是:能通过交换“如果三角形中有两边相等,那么这两边所对的角相等”的条件与结论的位置,提出三角形判定“三角形中,如果有两个角相等,那么这两个角所对的边相等”的猜想,并能证明这一猜想.
达成目标(2)的标志是:能用“三角形中,等角对等边”这一定理进行推理和计算,解决简单的问题.
三、教学问题诊断分析
探索等腰三角形的判定
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
等腰三角形的判定
篇一:等腰三角形的性质定理和判定定理
一. 本周教学内容:
等腰三角形的性质和判定
二. 教学目标:
(一)知识与技能:
(1)掌握等腰三角形的性质定理和判定定理,并会灵活运用。
(2)能用上述结论进行分析与说理,进行初步的逻辑思维训练,形成一定的推理能力。
(二)情感态度与价值观:
通过等腰三角形性质定理和判定定理的证明体现数学的应用价值。
三. 重点、难点:
重点是等腰三角形的性质定理和判定定理
难点是利用定理解决实际问题
四. 教学过程:
(一)知识梳理
知识点1:等腰三角形的性质定理1
(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)
(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠
C
(3)证明:取BC的中点D,连接AD
在△ABD和△ACD中
∴△ABD≌△ACD(SSS)
∴∠B=∠C(全等三角形对应角相等)
(4)定理的作用:证明同一个三角形中的两个角相等。
知识点2:等腰三角形性质定理2
(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)
(2)符号语言:
∵AB=AC∵AB=AC ∵AB=AC
∠1=∠2 AD⊥BC BD=DC
∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2
BD=DC AD
等腰三角形课件+教学设计+拓展资源
等腰三角形课件+教学设计+拓展资源
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第一章三角形的证明
1. 等腰三角形(四)
一、学生知识状况分析
在前两节课,学生已经经历了独立探索发现定理的过程,并能基本规范地证明相关命题,这些都为本节课进一步探索发现相关定理提供了较好的知识基础和活动经验基础。
二、教学任务分析
本节课,学生将探究等边三角形判定定理和含30°角的直角三角形的性质定理,应该说,这两个定理的证明和探索相对而言,并不复杂,更多的是前面定理的直接运用,因此,本节课可以更多地让学生自主探索。但第一个定理证明中,需要分类讨论,因此注意揭示其中的分类思想;第2个定理结论比较特殊,直接从定理条件出发,学生一般难能得到这个结论,因此,教科书中设计了一个学生活动,在活动的基础上“无意”中发现了其特殊的结论,这实际上也是一种数学发现的方法,因此也应注意让学生体会。为此,确定本节课的教学目标:
1.知识目标
理解等边三角形的判别条件及其证明,理解含有30o角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。
2.能力目标
①经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.
②经历实际操作,探
分类汇编:等腰三角形 - 图文
2013中考全国100份试卷分类汇编
等腰三角形
1、(2013?新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) 12 15 18 A.B. C. 12或15 D. 考点: 等腰三角形的性质;三角形三边关系. 分析: 因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论. 解答: 解:①当3为底时,其它两边都为6, 3、6、6可以构成三角形, 周长为15; ②当3为腰时, 其它两边为3和6, ∵3+3=6=6, ∴不能构成三角形,故舍去, ∴答案只有15. 故选B. 点评: 本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 2、(2013年临沂)如图,在平面直角坐标系中,点A1 , A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1A2B1B2其中的任意两点与点为顶..O.点作三角形,所作三角形是等腰三角形的概率是
2 3 1 1
(A) . (B) . (C
等腰三角形的判定教学反思
篇一:《等腰三角形》教案及教学反思
《等腰三角形》教案
课题:10.3 等腰三角形
课型:新课
教学目标:(1)学会如何判断一个三角形是不是等腰三角形;
(2)了解等腰直角三角形的概念
(3)通过实验探究等腰三角形“等角对等边”的性质,并能灵活应用它们解决有
关问题;
(4)感受数学的价值,培养和提高学生在数学学习中的应用意识和能力. 教学重点:探究等腰三角形的判定方法。
教学难点:等腰三角形“等角对等边”的理解和应用。
教学用具:多媒体、等腰三角形纸片等。
教学方式:探究式。
教学过程:
一、复习旧知,温故知新:
1.什么样的三角形叫做等腰三角形?它的各部分名称分别是什么?
2.等腰三角形有什么性质?
如图,△ABC中,AB=AC,
(1)若AD⊥BC,BC=6,∠BAC=50°,则BD= , ∠2=。
(2)若BD=CD ,∠1=25°,则∠4=,∠BAC=。
B
D (3)若∠1=∠2,BD=3,则BC=,∠3=。
二、创设情景,引入课题:
分给每位学生一张三角形纸片,你要怎样识别这个三角形是不是等腰三角形呢?
三、实验探究等腰三角形的判定方法:
(一)用量角器量测量标上符号的两个角的大小。
现象:这两个角相等。
结论:这个三角形是等腰三角形。
再用几何画板演示:如果一个三角形中有两个角相
《等腰三角形的性质》教学反思
《等腰三角形的性质》教学反思
肥西上派初级中学: 刘辉
一、引言
2014年12月,我校承担了肥西县中学“送培送教”、名师示范课部分活动,我有幸作为其中一名教师给大家展示了一节《等腰三角形的性质》示范课。本课在初中数学内容中具有一定的代表性,它蕴含着许多数学思想,如数形结合思想、类比思想等。本课是在探索了两个三角形全等的条件及轴对称性质的基础上进行的,进一步认识特殊的轴对称图形──等腰三角形,主要探索等腰三角形“等边对等角”和“等腰三角形的三线合一”的性质。本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,同时还是证明角相等、线段相等及两直线互相垂直的重要依据,具有承上启下的重要作用。
二、教学过程简录
活动1:动手操作,导入新知 问题:
如图,把一张长方形的纸按图中虚线对折,并减去阴影部分,再把它展开,得到一个什么图形?
C A
B
等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质外,还有它独有的性质,那么这节课我们就一起来研究等腰三角形独有的性质。
活动2:观察实验,猜出性质 问题:
(1)活动1中剪出的等腰三角形是轴对称图形吗?如果是,那么 它的