概率论与数理统计第二版徐雅静
“概率论与数理统计第二版徐雅静”相关的资料有哪些?“概率论与数理统计第二版徐雅静”相关的范文有哪些?怎么写?下面是小编为您精心整理的“概率论与数理统计第二版徐雅静”相关范文大全或资料大全,欢迎大家分享。
概率论与数理统计答案徐雅静版
1
1 习题答案
第1章
三、解答题
1.设P (AB ) = 0,则下列说法哪些是正确的?
(1) A 和B 不相容;
(2) A 和B 相容;
(3) AB 是不可能事件;
(4) AB 不一定是不可能事件;
(5) P (A ) = 0或P (B ) = 0
(6) P (A – B ) = P (A )
解:(4) (6)正确.
2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问:
(1) 在什么条件下P (AB )取到最大值,最大值是多少?
(2) 在什么条件下P (AB )取到最小值,最小值是多少?
解:因为)()()()(B A P B P A P AB P -+≤,
又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以
(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==0.6.
(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.
3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).
解:因为)()(B A P AB P =,
概率论与数理统计徐雅静版课后题答案1--7章
1
习题答案
第1章 三、解答题
1.设P(AB) = 0,则下列说法哪些是正确的? (1) A和B不相容; (2) A和B相容; (3) AB是不可能事件; (4) AB不一定是不可能事件; (5) P(A) = 0或P(B) = 0 (6) P(A – B) = P(A) 解:(4) (6)正确.
2.设A,B是两事件,且P(A) = 0.6,P(B) = 0.7,问: (1) 在什么条件下P(AB)取到最大值,最大值是多少? (2) 在什么条件下P(AB)取到最小值,最小值是多少? 解:因为P(AB)?P(A)?P(B)?P(A?B), 又因为P(B)?P(A?B)即P(B)?P(A?B)?0. 所以
(1) 当P(B)?P(A?B)时P(AB)取到最大值,最大值是P(AB)?P(A)=0.6.
(2) P(A?B)?1时P(AB)取到最小值,最小值是P(AB)=0.6+
概率论与数理统计徐雅静版课后题答案1--7章
1 第1章
三、解答题
1.设P(AB) = 0,则下列说法哪些是正确的? (1) A和B不相容; (2) A和B相容; (3) AB是不可能事件; (4) AB不一定是不可能事件; (5) P(A) = 0或P(B) = 0 (6) P(A – B) = P(A) 解:(4) (6)正确.
2.设A,B是两事件,且P(A) = 0.6,P(B) = 0.7,问: (1) 在什么条件下P(AB)取到最大值,最大值是多少? (2) 在什么条件下P(AB)取到最小值,最小值是多少? 解:因为P(AB)?P(A)?P(B)?P(A?B), 又因为P(B)?P(A?B)即P(B)?P(A?B)?0. 所以
(1) 当P(B)?P(A?B)时P(AB)取到最大值,最大值是P(AB)?P(A)=0.6.
(2) P(A?B)?1时P(AB)取到最小值,最小值是P(AB)=0.6+0.7-1=0.3. 3.已知事件A,B满足P(AB)?P(AB),记P(A) = p,试求P(B). 解:因为P(AB)?P(AB),
即P(AB)?P(A?
概率论与数理统计习题解答(第8章)主编徐雅静
第八章 假 设 检 验三、解答题
1. 某种零件的长度服从正态分布,方差? = 1.21,随机抽取6件,记录其长度(毫米)分别为
32.46,31.54,30.10,29.76,31.67,31.23
在显著性水平? = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度则需要检验的是:
2
X~N(?,?2),
H0:???0 H1:???0
由于?已知,选取Z2?X??0?n为检验统计量,在显著水平? = 0.01下,H0的拒绝域为:
{|z|?Z?2}?{|z|?Z0.005}
查表得Z0.005?2.575829,现由
n=6,
1n,??1.1, ?0?32.50 x??xi?31.12667ni?1计算得:
z?X??0?n?31.12667-32.51.16?3.05815
z?Z0.005
可知,z落入拒绝域中,故在0.01的显著水平下应拒绝H0,不能认为这批零件的平均长度为32.50毫米。 2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:
54,67,68,78,70,66,67,65,69,70
概率论与数理统计习题解答(第8章)主编徐雅静
第八章 假 设 检 验三、解答题
1. 某种零件的长度服从正态分布,方差? = 1.21,随机抽取6件,记录其长度(毫米)分别为
32.46,31.54,30.10,29.76,31.67,31.23
在显著性水平? = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度则需要检验的是:
2
X~N(?,?2),
H0:???0 H1:???0
由于?已知,选取Z2?X??0?n为检验统计量,在显著水平? = 0.01下,H0的拒绝域为:
{|z|?Z?2}?{|z|?Z0.005}
查表得Z0.005?2.575829,现由
n=6,
1n,??1.1, ?0?32.50 x??xi?31.12667ni?1计算得:
z?X??0?n?31.12667-32.51.16?3.05815
z?Z0.005
可知,z落入拒绝域中,故在0.01的显著水平下应拒绝H0,不能认为这批零件的平均长度为32.50毫米。 2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:
54,67,68,78,70,66,67,65,69,70
概率论与数理统计及其应用第二版课后答案
概率论与数理统计及其应用习题解答
1 第1章 随机变量及其概率
1,写出下列试验的样本空间:
(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录
投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,
记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰
子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;
(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___
___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P ,
375.0)()(])[()(=-=-=AB P B P B A S P B A P ,
875.0)(1)(___
--=AB P AB P ,
5.0)(625.0
概率论与数理统计
《概率论与数理统计》课程论文
浅谈概率论的思想发展及应用
能源科学与工程学院
于晓滢 1130240415
哈尔滨工业大学
摘 要
概率论是一门历史悠久的学科,关于它的起源众说纷纭,不过大家都承认的是,概率论是研究偶然、随机现象的规律性的数学理论,它拥有着自己独立的研究问题和有代表性的思想方法,并在现代生活的多个方面发挥着作用,拥有着不可替代的地位。本文将总结概率论中所应用的几种典型思想方法及演变,并陈述概率论在当代生活中的几种必要应用,让我们对这一学科有一个更深刻的了解。
I
目 录
摘 要 ................................................................................................................................................. I 第1章 概率论的诞生 ..................................................................................................................... 1
概率论与数理统计教程答案(徐建豪版)
习题1.1
1、写出下列随机试验的样本空间.
(1)生产产品直到有4件正品为正,记录生产产品的总件数. (2)在单位园中任取一点记录其坐标. (3)同时掷三颗骰子,记录出现的点数之和. 解:(1)??{4,5,6,7,8?} (2)??{(x.y)x2?y2?1} (3)??{3,4,5,6,7,8,9,10,?,18}
2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.
解:B?A?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6)}
BC?{(1.1),(2.2),(3.3),(4.4)}
B?C?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6),(4.6),(6.4),(5.6),(6.5)}
3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.
(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2 解:(1)第1,2次都没有中靶
(2)第三次中靶且第1
概率论与数理统计教程答案(徐建豪版)
习题1.1
1、写出下列随机试验的样本空间.
(1)生产产品直到有4件正品为正,记录生产产品的总件数. (2)在单位园中任取一点记录其坐标. (3)同时掷三颗骰子,记录出现的点数之和. 解:(1)??{4,5,6,7,8?} (2)??{(x.y)x2?y2?1} (3)??{3,4,5,6,7,8,9,10,?,18}
2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.
解:B?A?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6)}
BC?{(1.1),(2.2),(3.3),(4.4)}
B?C?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6),(4.6),(6.4),(5.6),(6.5)}
3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.
(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2 解:(1)第1,2次都没有中靶
(2)第三次中靶且第1
概率论与数理统计教程答案(徐建豪版)
习题1.1
1、写出下列随机试验的样本空间.
(1)生产产品直到有4件正品为正,记录生产产品的总件数. (2)在单位园中任取一点记录其坐标. (3)同时掷三颗骰子,记录出现的点数之和. 解:(1)??{4,5,6,7,8?} (2)??{(x.y)x2?y2?1} (3)??{3,4,5,6,7,8,9,10,?,18}
2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.
解:B?A?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6)}
BC?{(1.1),(2.2),(3.3),(4.4)}
B?C?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6),(4.6),(6.4),(5.6),(6.5)}
3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.
(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2 解:(1)第1,2次都没有中靶
(2)第三次中靶且第1