数学建模图论最短路径模型
“数学建模图论最短路径模型”相关的资料有哪些?“数学建模图论最短路径模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学建模图论最短路径模型”相关范文大全或资料大全,欢迎大家分享。
图论中最短路径问题
图论最短路径问题 在消防选址中的应用
【摘 要】 最短路径问题是图论解决的典型实际问题之一,可用来解决管路铺设、线路
安装、厂区布局和设备更新等实际问题。介绍了图论最短路径问题及其算法,并应用图论最短路径问题的分析方法,解决城市消防站的选址问题。
【关键词】 最短路径;Floyd算法;消防
1 引言
图论是运筹学的一个重要分支,旨在解决离散型的优化问题,近年来发展十分迅速。在人们的社会实践中,图论已成为解决自然科学、工程技术、社会科学、生物技术以及经济、军事等领域中许多问题的有力工具之一。图论中的“图”,并不是通常意义下的几何图形或物体的形状图,也不是工程设计图中的“图”,而是以一种抽象的形式来表达一些确定的对象,以及这些对象之间具有或不具有某种特定关系的一个数学系统。也就是说,几何图形是表述 物体的形状和结构,图论中的“图”则描述一些特定的事物和这些事物之间的联系。它是数学中经常采用的抽象直观思维方法的典型代表。
2 图论基本概念
2.1 图的定义
有序三元组G?(V,E,?)称为一个图,其中:
(1)V?(V1,V2,?,Vn)是有穷非空集,称为顶点集,其元素叫做图的顶点; (2)E称为边集,其元素叫做图的边;
(3)?是从边集E
图论之 最短路
图论之 最短路
一、求最短路方法(对于一个包含环的图) 1、Dijkstra 2、Bellman-ford 3、SPFA 4、Floyd
二、Dijkstra思想(求单源点最短路,不含负边权)
1、设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将其加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2、Dijkstra步骤
(1)初始时,S只包含源点,即S=v,距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权;
(2)从U中选取一个距离v最小的顶点k,把k加入S中(该选定的距离就是v到k的最短路径长度);
(3)以k为新考虑的中间点,修改
数学建模 最短路程
交巡警服务平台的设置与调度
摘要
本论文主要是关于图论中的“最短路径问题”和“最优搜索问题”。问题所述的模型已经很自然地用图表示出来,所以我们运用图的性质和算法来求解问题。
图论中求最短路径通常采用dijkstra算法,但本题涉及的交巡警平台数量较多,即求多个源点到其它所有顶点的距离,所以采用floyd算法求解比较简单,其基本思想是通过程序得到每个节点到其他节点的最优距离。
针对问题一,用floyd算法算出每个交巡警平台3分钟内所能到达的全部节点,这些节点就是平台的管辖范围,但仍有3分钟内不能到达的节点,这些节点处就应该增设交巡警服务平台。在快速封锁13条交通要道时,要遵循封锁时间最短、每个平台的警力最多封锁一个路口的原则,运用LINGO程序解答。最后分析得到出警时间至少大于3分钟的节点,及工作量最大的平台,在这些节点处需要增加3个服务平台。
针对问题二,需要对发案率进行降序排列,筛选出发案率较高,但是未设置交巡警服务平台的节点。根据六个城区的基本数据,得到每个平台管辖的面积和人口,比较各平台的工作量,从而找出不合理的理由。在搜捕犯罪嫌疑人时要遵循两个原则:搜捕时间最短和围堵区域最小。根据逃犯的位置和逃跑的可能路径建立关于时间T的目标函数和初
灾情巡视的最短路 数学建模
灾情巡视路线的数学模型
摘 要
本文研究的是根据某县的乡(镇)、村公路网示意图,如何在不同条件下制定出最佳灾情巡视方案的问题。
针对问题一:首先将公路网转化为一张无向赋权图并构造其邻接矩阵,然后根据Dijkstra算法求出任意两点间的最短距离及O点到其余顶点的最短路,最短路构成了一棵以O为树根的最小生成树,将干枝分为三组,每组各顶点间的最短路构成一个完备加权图,再建立混合整数规划模型求其最佳H圈。再逐步调整,使三组中路程较长者减小,最后得到三个组路程分别为204.9km、208.8km和205.3km,最长路程为208.8km,路程均衡度为1.9%,总路程为619km。
针对问题二:依题意至少需要4组,根据问题一中得到的最小生成树将顶点分为4组,利用问题一中的算法,求出每组的最佳H圈,然后逐步调整,使四组中用时较长者减小,最后得到四个组所用时间分别为21.9h、22.41h、22.12h和21.66h,最长时间为22.41h,时间均衡度为3.3%。
针对问题三:根据O点到最远点的距离确定时间上界,然后根据时间上界和到O点的距离由远及近确定最优巡视路线,得最优方案为分23组,巡视时间为6.43h,具体路径见问题三解答。
针对问题四:以
最短路径问题作图练习
最短路径问题作图练习
1.已知:P、Q是△ABC的边AB、 AC上的点,你能在BC上确定一点R,使△PQR的周长最短吗? 作法:
2.已知P是△ABC的边BC上的点,你能在AB、AC上分别确定一点Q和R,使△PQR的周长最短吗? 作法:
3. 如图,直角坐标系中有两点A、B,在坐标轴上找两点C、D,使得四边形ABCD的周长最小。
.A . B 作法:
4. 如图,OMCN是矩形的台球桌面,有黑、白两球分别位于B、A两点的位置上,试问怎样撞击白球,使白球A依次碰撞球台边OM、ON后,反弹击中黑球?
作法:
CM
AB N O
5. 如图,A、B是直线a同侧的两定点,定长线段PQ在a上平行移动,问PQ移动到什么位置时,
AP+PQ+QB的长最短?
作业:
6...
.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M. (1)如图1,在l上求作一点M,使得| AM-BM |最小; 作法:
图1
(2)如图2,在l上求作一点M,使得|AM-BM|最大; 作法:
图2
最短路径实验报告
HUNAN UNIVERSITY
课程实习报告
题 目: 最短路径问题 学生姓名 学生学号 20110801328 专业班级 计算机科学与技术(3)班 完 成 日 期 2013.5.29
一、 需 求 分 析:
1.若用有向网表示某地区的公路交通网,其中顶点表示该地区的
一些主要场所,弧表示已有的公交线路,弧上的权表示票价。试设计
一个交通咨询系统,指导乘客以最少花费从该地区中的某一场所到达
另一场所。
2.本程序要求:
(1)从文件中读取有限网中顶点的数量和顶点间票价的矩阵。
(2)以用户指定的起点和终点,输出从起点到终点的花费。
3.在dos系统下输入起点,并输出最短路径。
4.测试数据:
输入
(文件)
5 -1 10 3 20 -1
-1 -1 -1 5 -1
-1 2 -1 -1 15
-1 -1 -1 -1 11
-1 -1 -1 -1 -1
(用户)
起点 0
终点 4
输出
18
初中数学:最短路径问题专题学习
初中数学:最短路径问题专题学习
【基本问题】
【问题1】 AlB作法 图形 原理 连AB,与l交点即为P. 两点之间线段最短. PA+PB最小值为AB. 在直线l上求一点P,使PA+PB值最小. 【问题2】“将军饮马” ABl作法 作B关于l的对称点B'连A B',与l交点即为P. 图形 原理 两点之间线段最短. PA+PB最小值为A B'. 在直线l上求一点P,使PA+PB值最小. 【问题3】 l1作法 图形 原理 Pl2分别作点P关于两直线的对称点P'和P'',连P'P'',与两直线交点即为M,N. 两点之间线段最短. PM+MN+PN的最小值为 线段P'P''的长. 在直线l1、l2上分别求点M、N,使△PMN的周长最小. 【问题4】 l1QPl2作法 分别作点Q 、P关于直线l1、l2的对称点Q'和P'连Q'P',与两直线交点即为M,N. 图形 原理 两点之间线段最短. 四边形PQMN周长的最小值为线段P'P''的长. 在直线l1、l2上分别求点M、N,使四边形PQMN的周长最小. 【问题5】“造桥选址”
AMNBmn作法 将点A向下平移MN的长度单位得A',连A'B,交n于点N
最短路径问题归纳小结(刁老师数学)
最短路径问题(刁老师数学)
【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结
点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】 【问题1】 AlB作法 A图形 原理 连AB,与l交点即为P. PBl两点之间线段最短. PA+PB最小值为AB. 在直线l上求一点P,使PA+PB值最小. 【问题2】“将军饮马” ABl作法 A作B关于l的对称点B'连A B',与l交点即为P. 图形 原理
10.2 最短路径与选址问题
10.2 最短路径与选址问题
第2节 最短路径与选址问题
最短路径问题
选址问题
10.2 最短路径与选址问题
对于许多地理问题,当它们被抽 象为图论意义下的网络图时,问题的核 心就变成了网络图上的优化计算问题。 其中,最为常见的是关于路径和顶点的 优选计算问题。 在路径的优选计算问题中,最常见 的是最短路径问题;而在顶点的优选计 算问题中,最为常见的是中心点和中位 点选址问题。
10.2 最短路径与选址问题
一、最短路径问题(一)最短路径的含义
“纯距离”意义上的最短路径 例如,需要运送一批物资从一个城市到另 一个城市,选择什么样的运输路线距离最短? “经济距离”意义上的最短路径 例如,某公司在10大港口C1,C2,…, C10设有货栈,从Ci到Cj之间的直接航运价格, 是由市场动态决定的。如果两个港口之间无直 接通航路线,则通过第三个港口转运。那么, 各个港口之间最廉价的货运线路是什么?
10.2 最短路径与选址问题
“时间”意义上的最短路径 例如,某家经营公司有一批货物急需从一个 城市运往另一个城市,那么,在由公路、铁路、 河流航运、航空运输等4种运输方式和各个运输线 路所构成的交通网络中,究竟选择怎样的运输路 线最节省时间? 以上3类问题,都可以抽
求最短路径的新算法
求最短路径的新算法
CN4321258/TP ISSN10072130X
计算机工程与科学
COMPUTERENGINEERING&SCIENCE
2006年第28卷第2期
Vol128,No12,2006
文章编号:10072130X(2006)0220083203
求最短路径的新算法
3
TheNewAlgorithmforFindingtheShortestPaths
徐凤生
XUFeng2sheng
(德州学院计算机系,山东(DepartmentofComputerScienceandTechnology摘 要:,并用。实验表明,该算法能高效Abstract:Anewtheshortestpathshasbeenputforwardinthispaper.Alltheshortestpathsfromonenodetoalltheothernodescanbederivedquicklybyusingthealgorithm.ThealgorithmisverifiedandimplementedbyarelevantCprogram.
关键词:最短路径;Dijkstra算法;邻接矩阵
Keywords:shortestpath;Dijk