中心差分格式求解微分方程
“中心差分格式求解微分方程”相关的资料有哪些?“中心差分格式求解微分方程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中心差分格式求解微分方程”相关范文大全或资料大全,欢迎大家分享。
中心差分格式
中心差分格式
1、考虑问题
考虑二阶常微分方程边值问题:
d2uLu??2?qu?f (1) dxu(a)??,u(b)??
其中q,f为[a,b]上的连续函数,?,?为常数。
2、网格剖分与差分格式
将区间[a,b]分成N等分,分点为
xi?a?ih,i?0,1,???,N,
h=(b-a)/N,于是我们得到区间I=[a,b]的网格剖分,xi为网格节点,h为步长。
差分格式为:
ui?1?2ui?ui?1?qiui?fi2hi?1,2,???,N?1, u0??,uN??.Lhui??
3、截断误差
将方程(1)在节点离散化,由泰勒公式展开得
u(xi?1)?2u(xi)?u(xi?1)?d2u(x)?h2?d4u(x)?3????(h) ??22?4?h?dx?i12?dx?i所以截断误差为
h2?d4u(x)?Ri(u)?????(h3) 4?12?dx?i4、数值例子
u(x)?exq(x)?1?sinx
其中x??0,1?
5、求解
d2uLu??2?qu?f由,且已知 dxu(x)?exq(x)?1?sinx 可得
f(x)?exsinx
将向量式的差分格式用矩阵形式表示出来,得到矩阵形式为
?2?q1h2???1??
中心差分格式
中心差分格式
1、考虑问题
考虑二阶常微分方程边值问题:
d2uLu??2?qu?f (1) dxu(a)??,u(b)??
其中q,f为[a,b]上的连续函数,?,?为常数。
2、网格剖分与差分格式
将区间[a,b]分成N等分,分点为
xi?a?ih,i?0,1,???,N,
h=(b-a)/N,于是我们得到区间I=[a,b]的网格剖分,xi为网格节点,h为步长。
差分格式为:
ui?1?2ui?ui?1?qiui?fi2hi?1,2,???,N?1, u0??,uN??.Lhui??
3、截断误差
将方程(1)在节点离散化,由泰勒公式展开得
u(xi?1)?2u(xi)?u(xi?1)?d2u(x)?h2?d4u(x)?3????(h) ??22?4?h?dx?i12?dx?i所以截断误差为
h2?d4u(x)?Ri(u)?????(h3) 4?12?dx?i4、数值例子
u(x)?exq(x)?1?sinx
其中x??0,1?
5、求解
d2uLu??2?qu?f由,且已知 dxu(x)?exq(x)?1?sinx 可得
f(x)?exsinx
将向量式的差分格式用矩阵形式表示出来,得到矩阵形式为
?2?q1h2???1??
常微分方程的求解 实验六
《数学实验》报告
实验名称 常微分方程的求解 学 院 专业班级 姓 名 学 号
2013年5月
一、 【实验目的】
1. 学习在MATLAB中如何求解微分方程的方法;
2. 掌握基本的微分求解命令,学会结合学过的基础知识求解方程; 3. 熟练运用基本的解法即数值解法解微分方程; 4. 注意不同方法下求得微分方程的优缺点。
二、 【实验任务】
xsinxy?1. 求解微分方程为cosy。
''y2. 用数值方法求解下列微分方程,用不同颜色和线形将y和画在同一个
图形窗口里:
y?ty?y?1?2t初始时间:t0=0;终止时间:tf
三、 【实验程序】 1.
y=dsolve('Dy=x*sinx/cosy','x') 2.
定义的程序:
function xdot=exf(t,x)
xdot=[0 1;1 -t]*x+[0;1]*(1-2*t);
主程序:
2
'''
=?;初始条件:y|t?0?0.1 y
微分方程与差分方程_详解与例题
第七章 常微分方程与差分方程
常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。
【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler)方程;微分方程的简单应用。
【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。
【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可
微分方程与差分方程_详解与例题
第七章 常微分方程与差分方程
常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。
【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler)方程;微分方程的简单应用。
【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。
【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可
D6_1微分方程及其求解(4)
发放
常系数非齐次线性微分方程一、
f (x) = e P (x) 型 m+P (x)sinωx]型 n
λx
二、 f (x) = eλ x[P(x)cosω x l
高等数学》 《高等数学》
土木103、104 、 土木
2010-2011学年第二学期 - 学年第二学期
发放
二阶常系数非齐次线性微分方程 :
y′′ + py′ +qy = f (x)y =Y+y*
(p,q为常数 为常数) 为常数
①
根据解的结构定理 , 其通解为齐次方程通解 非齐次方程特解
求特解的方法
— 待定系数法的待定形式, 的待定形式
根据 f (x) 的特殊形式 , 给出特解
代入原方程比较两端表达式以确定待定系数 .高等数学》 《高等数学》 土木103、104 、 土木 2010-2011学年第二学期 - 学年第二学期
发放
设非齐次方程(2)的右端 定理 4 设非齐次方程 的右端 f (x)是几个函
( 数之和, 数之和 如 y′′ + P(x)y′ +Q x)y = f1(x) + f2(x)分别是方程, 而 y 与 y 分别是方程* 1 * 2
y′′ + P(x)y′ +Q x)y = f1(x) ( y′′ + P(x)y′ +Q x)y = f2(x) (的特解, 就是原方程的特解.
微分方程讲义
课程安排:2学期,周学时 4 , 共 96 学时. 主要内容:定积分的计算 要求:听课 、复习 、 作业 本次课题(或教材章节题目):第七章 微分方程 第一讲 微分方程的基本概念 教学要求: 微分方程的基本概念以及微分方程阶的概念。 重 点:微分方程的基本概念,微分方程阶的概念 难 点: 微分方程的概念; 微分方程阶的概念 教学手段及教具:讲授为主 讲授内容及时间分配: 1 复习 15分钟 2 微分方程的问题举例 30分钟 3 微分方程概念以及阶数练 45分钟 课后 作业 参考 资料 定积分的概念与性质 一、复习导数和高阶导数的概念 二、微分方程问题举例及引出 函数是客观事物的内部联系在数量方面的反映?利用函数关系又可以对客观事物的规律性进行研究?因此如何寻找出所需要的函数关系?在实践中具有重要意义?在许多问题中?往往不能直接找出所需要的函数关系?但是根据问题所提供的情况?有时可以列出含有要找的函数及其导数的关系式?这样的关系就是所谓微分方程?微分方程建立以
第十章 常微分方程(组)求解
第三篇 第十章 常微分方程(组)求解
Matlab常微分方程(组)求解 一、 求微分方程的解
(一) 相关函数(命令)及简介
1, dsolve('equ1','equ2',…):Matlab求微分方程的解析解。
equ1,equ2,…为方程(或条件)。写方程(或条件)时用Dy表示y关于自变量的一阶导数,用D2y表示y关于自变量的二阶导数,依次类推。
2, simplify(s):对表达式s使用maple的化简规则进行化简。 例如: syms x
simplify(sin(x)^2+cos(x)^2) ans=1
3,[r,how]=simple(s):由于Matlab提供了多种化简规则,simple命令就是对表达式s用各种规则进行化简,然后用r返回最简形式,how返回形成这种形式所用的规则。 例如: syms x
[r,how]=simple(cos(x)^2-sin(x)^2) r=cos(2*x) how=combine
4,[T,Y]=solver(odefun,tspan,y0),求微分方程的数值解。 (1)其中的solver为命令
ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb之一
第九章 微分方程与差分方程
的高等数学练习题 第九章 微分方程与差分方程
系 专业 班 姓名 学号 第一节 微分方程的基本概念 第二节 一阶微分方程(一)
一.选择题
1.微分方程xyy???x(y?)3?y4y??0的阶是 ( A ) (A)2 (B)3 (C)4 (D)5 2.微分方程
y??2y?0的通解是 ( C )
(A)y?Csin2x (B)y?4e2x (C)y?Ce2x (D)Y?Cex
3.微分方程y\?11?y(y?)2?0的通解是 ( C (A)Cx (C)CCx1ex?C2 (B)e?C2e1?1 (D)Cx1e?C2x
4.下列微分方程中,属于可分离变量的微分方程是
12微分方程
第十二章 微分方程
一、内容提要
(一)主要定义
【定义12.1】 微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程.未知函数是一元函数的叫做常微分方程; 未知函数是多元函数的叫做偏微分方程.
【定义12.2】 微分方程的阶 微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶.
一般形式为: Fx,y,y?,y??,?,y标准形式为:y?n??(n)??0.
??fx,y,y?,?,y?n?1?.
?【定义12.3】 微分方程的解 若将函数y???x?代入微分方程使其变成恒等式 即 F?x,??x?,???x????n???x????0,
或者 ??n??x????x?,?,??n?1??x?? f?x,?x,?????则称y???x?为该方程的解.
根据y?y?x?是显函数还是隐函数 ,分别称之为显示解与隐式解.若解中含有任意常数,当独立的任意常数的个数正好与方程的阶数相等时该解叫做通解(或一般解);不含有任意常数的解叫特解.
【定义12.4】 定解条件 用来确定通解中任意常数的条件称为定解条件,最常见的定解条件是初始条件.
例
【例1