大学的高等数学能学懂吗?

“大学的高等数学能学懂吗?”相关的资料有哪些?“大学的高等数学能学懂吗?”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大学的高等数学能学懂吗?”相关范文大全或资料大全,欢迎大家分享。

大学高等数学教案资料

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

,.

高等数学教材

,.

一、函数与极限

1、集合的概念

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。

⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。

⑸、全体实数组成的集合叫做实数集。记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合

⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中

高等数学

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

AnnalsofMathematics,157(2003),919–938

LargeRiemannianmanifolds

whichare exible

ByA.N.Dranishnikov,StevenC.Ferry,andShmuelWeinberger*

Abstract

Foreachk∈Z,weconstructauniformlycontractiblemetriconEuclideanspacewhichisnotmodkhypereuclidean.WealsoconstructapairofuniformlycontractibleRiemannianmetricsonRn,n≥11,sothattheresultingmani-foldsZandZ areboundedhomotopyequivalentbyahomotopyequivalencewhichisnotboundedlyclosetoahomeomorphism.Weshowthatfortheself(Z)→K (C (Z))fromlocally -spacestheC -algebraassemblymapK

niteK-homologytotheK-th

高等数学-上海海事大学

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

2019年上海海事大学插班生考试大纲

考试科目 考试时间 题型及分数构成 教材及主要参考书目 2小时 高等数学 试卷总分 150分 选择(20)、填空(20)计算(80)证明(10)应用(20) 教材:《高等数学》同济大学(第五版)高等教育出版社 参考书:《高等数学解题方法与同步指导》陈春宝沈家骅同济大学出版社 考试内容 一、极限、连续(约20分) 1、掌握极限四则运算法则,掌握\\,\00?\,\???\等未定型极限的计算。 ? 2、掌握利用两个重要极限的计算。 3、理解无穷小、无穷大,以及无穷小的阶的概念,会用等价无穷小求极限。 4、理解函数连续的定义,了解间断点的概念,并会判别间断点的类型。 5、了解初等函数的连续性和闭区间上连续函数的性质(零点定理和介值定理)。 二、一元函数微分学(约30分) 1、 理解导数和微分的概念,理解导数的几何意义,会求切线和法线,理解函数的可导性与连续性之间的关系,会讨论分段函数的可导性,会利用导数定义计算。 2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。 3、掌握初等函数一阶、二阶导数的求法及初等函数的n阶导数。 4、会求

大学高等数学阶段测验卷

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

阶段测验卷 学号 班级 姓名

第一章函数与极限阶段测验卷

学号 班级 姓名 成绩 考试说明:1、请将客观题答案全部填涂在答题卡上,写在试卷上一律无效。

2、请在答题卡上填涂好姓名、班级、课程、考试日期、试卷类型和考号。试卷

类型划A;考号为学号的后九个数,请填涂在“考号”的九个空格并划线。

3、答题卡填涂不符合规范者,一切后果自负。

题号 一 二 三 四 五 六 总分 得分

一.是非判断题(本大题共10题,每题2分,共20分) 1. y?1?cos2x与y?sinx是相同的函数. ( ) A、正确 B、错误

2. 函数y?x?ln(1?x)在区间(??,?1)单调递增.( ) A、正确 B、错误 3. 函数y?ex在(0,??)有界. ( ) A. 正确 B. 错误 4.

高等数学(一)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

编号:

《高等数学(一)》课 程 自 学 辅 导 材 料 配套教材: 《高等数学(一)微积分》 主 编: 章学诚 出 版 社: 武汉大学出版社 版 次: 2004年版 适应层次: 本 科 内 部 使 用 2012年9月 ●●●●●

目 录 第一部分 自学指导 第1章:函数及其图形…………………………………………………………………3 第2章:极限和连续……………………………………………………………………3 第3章:一元函数的导数和微分………………………………………………………3 第4章:微分中值定理和导数的应用…………………………………………………3 第5章:一元函数积分学………………………………………………………………3 第6章:多元函数微积分………………………………………………………………3 第二部分 复习思考题 一.单选题 ……………………………………………………………………………4 二.填空题 ……………………………………………………………………………24 三.计算题 ………………………

高等数学教材

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

df(x)dx 与 dx解 不相等.设F?(x)?f(x),则

例1 (E01) 问

????f?(x)dx是否相等?

d??f(x)dx??dx(F(x)?C)?F?(x)?0?f(x)

d而由不定积分定义?f?(x)dx?f(x)?C,所以??f(x)dx???f?(x)dx.

dxddx例3 (E03) 检验下列不定积分的正确性:

(1)xcosxdx?xsinx?C;(2)xcosxdx?xsinx?cosx?C; 解 (1)错误. 因为对等式的右端求导,其导函数不是被积函数:

???xsinx?C???xcosx?sinx?0?xcosx.

(2)正确. 因为

?xsinx?cosx?C???xcosx?sinx?sinx?0?xcosx.

1.填空题

(1)若f(x)的一个原函数为lnx2,则f(x)? 。 解:因为?f(x)dx?lnx2?c 所以f(x)?2x2? x2x(2)若?f(x)dx?sin2x?c,则f(x)? . 解:f(x)?2cos2x

(3)若?f(x)dx?xlnx?c,则f?(x)? . 解:f(x)?lnx?1,f?(x)?(4)d?e?xd

专升本 - 高等数学

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

2011年陕西省普通高等教育专升本招生考试考前冲刺密卷

高等数学

一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题的四个选项中,只有一个是符合题目要求的

1.函数f(x,y)在点(x0,y0)处的偏导存在是函数f(x,y)在该点连续的( ). A.充分条件不是必要条件 B.必要条件但不是充分条件 C.充要条件 D.既不是充分条件,也不是必要条件

2.lim →

x0

?x02tanxdxx4=( ).

1

A.0 B. C.1 D.2

2

113.若函数f(x)满足f(x)=x+1-??1f(x)dx,则f(x)=( ).

2

1111

A.x- B.x- C.x+ D.x+ 3223

22

4.设区域D由y=x,x=y围成,则D的面积为( ).

121A. B. C.1 D.1 333

5.曲面x2+y2=1+2z2表示( ).

A.旋转单叶双曲面 B.旋转双叶双曲面 C.圆锥面 D.椭球面

二、填空题(本大题共5小题,每小题5分,共25分)

π

0,?上的最大值为________. 6.函数f(x)=x+2cosx在??2?

x2+ax-6

7.若lim =5,则a=________.

x→2x-2

π8.定积分

高等数学笔记

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第1章 函数

§1 函数的概念 一、区间、邻域

自然数集 N 整数集 Z 有理数集 Q 实数集 R 建立数轴后:

建立某一实数集A与数轴上某一区间对应

区间:设有数 a,b,a

a称为 (a,b) 的左端点,b称为 (a,b) 的右端点。

a?(a,b),b?(a,b)

闭区间: [a,b]={x|a≤x≤b}

a∈[a,b],b∈[a,b]

文章来源:http://www.codelast.com/

半开区间: [a,b)={x|a≤x≤b},a∈[a,b),b?[a,b)

(a,b]={x|a

a,b都是确定的实数,称 (a,b),[a,b),(a,b],[a,b] 为有限区间,“ b?a ”称为区间长度。

记号:

+∞ ——正无穷大 ?∞ ——负无穷大

区间:

[a,+∞)={x|a≤x} (a,+∞)={x|a

称为无穷区间(或无限区间) 文章来源:http://www.codelast.com/

邻域:设有两个实数 a,δ(δ>0) ,则称实数集 {x|a?δ

a 称为 N(a,δ) 的中心, δ>0 称为邻域 N(a,δ) 的半径。

去心邻域:把 N(a,δ) 的中心点 a 去掉,称为点 a 的去心邻域,记为 N(a

高等数学复习

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第七章 常微分方程

1.常微分方程的基本概念

常微分方程的阶

线性微分方程和非线性微分方程

y(n)?a1(x)y(n?1)???an?1(x)y??an(x)y?g(x) n阶微分方程的特解和通解

一般地,微分方程的不含有任意常数的解称为微分方程的特解. 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解)

例 试指出下列方程是什么方程,并指出微分方程的阶数.

dy(1)?x2?y;dx3dy?dy?(2)x???2?4x;dx?dx?2d2y?dy?(3)x2?2???5xy?0;(4)cos(y??)?lny?x?1.dx?dx? 例 验证函数y?(x2?C)sinx(C为任意常数)是方程

dy?ycotx?2xsinx?0 dx的通解, 并求满足初始条件y|2.可分离变量的微分方程

可分离变量的微分方程

x??2?0的特解

dy?f(x)g(y) dx齐次方程

dy?y??f?? dx?x?dy?2xy的通解. dx例 求微分方程

例 求微分方程dx?xydy?y2dx?ydy的通解 例 求解微分方程

dyyy??tan满足初始条件dxxxyx?1??6的特解

3.一阶线性微分方程 形如

dy?

大学生学习高等数学的障碍与突破

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

龙源期刊网 http://www.qikan.com.cn

大学生学习高等数学的障碍与突破

作者:孟万山

来源:《读写算·教研版》2014年第09期

摘 要:本文以大学生学习高等数学的障碍为研究对象,结合有关数据数据调查,从学生学习和教师教学两方面,分析目前大学生在学习高等数学的过程中遇到的最主要的障碍和困境,并针对性地提出相关解决高等数学学习障碍的对策,推动高等数学的相关学习和教学理论的发展。

关键词:高等数学;大学;学习;障碍;对策

中图分类号:G642 文献标识码:B 文章编号:1002-7661(2014)09-201-01 一、大学生学习高等数学的一般障碍 1、学生方面:

第一,缺乏学习兴趣。在一般的本科院校里,超过百分之六十的学生对高等数学的数学兴趣一般或者没有兴趣,极少有学生对高等数学保持浓厚的兴趣,低下的学习兴趣与高度数学学习困难直接相关。第二,缺乏正确的学习方式。学好高等数学的重要学习方式就是做好平时的课堂笔记,而大部分大学生在做数学课堂笔记时,不能很好地做到记录数学知识的重点、难点和疑点,有的学生甚至不做数学笔记,不合理的学习方