计算伽马分布的期望和方差

“计算伽马分布的期望和方差”相关的资料有哪些?“计算伽马分布的期望和方差”相关的范文有哪些?怎么写?下面是小编为您精心整理的“计算伽马分布的期望和方差”相关范文大全或资料大全,欢迎大家分享。

常见分布的期望和方差 ()

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

常见分布的期望和方差

x n

(0,1)

N()

概率与数理统计重点摘要

1、正态分布的计算:()()()X F x P X x μ

σ-=≤=Φ。

2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72)

3、分布函数(,)(,)x y

F x y f u v dudv -∞-∞=??具有以下基本性质:

⑴、是变量x ,y 的非降函数;

⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;

⑷、对于任意的11221212(,),(,),,x y x y x x y y << 

 ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥

4、一个重要的分布函数:1(,)(arctan )(arctan )23

x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布:

边缘概率密度

常见分布的期望与方差的计算

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

常见分布的期望与方差的计算

这些分布的期望和方差要求同学们熟记,以下是计算过程,供课下看。

1.0-1分布

已知随机变量X的分布律为

X

10

p

p1 p

则有

E(X)=1 p+0 q=p,

D(X)=E(X2) [E(X)]

2

=12

p+02

(1 p) p2

=pq.

2.二项分布

设随机变量X 服从参数为n, p 二项分布,

(法一)设Xi为第i 次试验中事件A 发生的次数,i=1,2,",n则

X=∑Xi

i=1

n

n

显然,Xi 相互独立均服从参数为p 的0-1分布,

所以E(X)=∑E(Xi)=np.

i=1

D(X)=∑D(Xi)=np(1 p).

i=1

n

(法二) X的分布律为 n k P{ X= k}= p (1 p )n k, ( k= 0,1,2,", n), k n n n k则有 E ( X )=∑ k P{ X= k}=∑ k p (1 p )n k k=0 k k=0kn!=∑ p k (1 p )n k k= 0 k ! ( n k )! np( n 1)!=∑ p k 1 (1 p )( n 1) ( k 1) k=1 ( k 1)![( n 1) ( k 1)]!n n

( n

分布列、期望与方差(答案)

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

2011理数导学案

第十三章 第一节 排列与组合

执笔:李建军 审核:理数学备考小组

【目标与要求】(1)了解排列与组合的定义;

(2)理解排列与组合数的性质,计算简单的排列与组合数; (3)解决与排列与组合有关的应用题。 【回顾与思考】

1.两点分布:对于一个随机试验,如果它的结果只有两种情况,则可以用随机变量??0,1来描述这个随机试验的结果。如果发生的概率为p,则不发生的概率为1?p,这时,称?服从两点分布,其中p称为__________。其分布列为: 期望E??_______;方差D??________。

kn?kCMCN?M2.超几何分布:P(X?k)?,k?0,1,nCN,m,其中m?___________。

3.二项分布:在n次独立重复试验中,事件A发生的次数X服从二项分布,记为_________。

kkn?kP(X?k)?Cnpq(q?1?p,k?0,1,2,…n),表示______________________,二项

分布的分布列为:

X 0 1 … … k … … n P 期望为EX?______________;方差为DX?_________________。 4.正态分布:

(1)正态曲线:如果总体密度

20100414期望和方差

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

概率论课件

第四章 随机变量的数字特征随机变量的概率分布:能完整地描述随机变量的统计规律性。 但在许多情况下,只须知道从不同角度反映随机变量取值特征 的若干个数字就够了,这些数字就称为随机变量的数字特征. 如:评价某地区粮食产量水平——平均产量 评价某批棉花质量——纤维的平均长度、 各纤维长度与平均长度之间的偏离程度

本章将讨论随机变量的 数学期望、方差 协方差及相关系数 方差、协方差 数学期望 方差 协方差 相关系数

概率论课件

4.1 数学期望一、离散型随机变量的数学期望

(mathematical expectation)

某商场计划与五一节在户外搞一次促销 活动,统计资料表明,如果商场内搞促销可获得经 济效益3万元;在商场外搞促销,如果不下雨可获经 济效益12万元,如果下雨则带来经济损失5万元;若 天气预报称当天有雨的概率为40%,则商场如何选择 促销方式?

引例

定义1 设离散型随机变量 X 的分布律为 x1 x2 L xk L X

P则称

E ( X ) = ∑ xk pk (要求此级数绝对收敛)k =1

p1

p2 L pk L

为 X 的数学期望(或均值).

如果级数是条件收敛的,则 它的和与级数中各项的求和 顺序有关.为了避免这种混 乱的局面出现,因

20100414期望和方差

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

概率论课件

第四章 随机变量的数字特征随机变量的概率分布:能完整地描述随机变量的统计规律性。 但在许多情况下,只须知道从不同角度反映随机变量取值特征 的若干个数字就够了,这些数字就称为随机变量的数字特征. 如:评价某地区粮食产量水平——平均产量 评价某批棉花质量——纤维的平均长度、 各纤维长度与平均长度之间的偏离程度

本章将讨论随机变量的 数学期望、方差 协方差及相关系数 方差、协方差 数学期望 方差 协方差 相关系数

概率论课件

4.1 数学期望一、离散型随机变量的数学期望

(mathematical expectation)

某商场计划与五一节在户外搞一次促销 活动,统计资料表明,如果商场内搞促销可获得经 济效益3万元;在商场外搞促销,如果不下雨可获经 济效益12万元,如果下雨则带来经济损失5万元;若 天气预报称当天有雨的概率为40%,则商场如何选择 促销方式?

引例

定义1 设离散型随机变量 X 的分布律为 x1 x2 L xk L X

P则称

E ( X ) = ∑ xk pk (要求此级数绝对收敛)k =1

p1

p2 L pk L

为 X 的数学期望(或均值).

如果级数是条件收敛的,则 它的和与级数中各项的求和 顺序有关.为了避免这种混 乱的局面出现,因

概率论分布列期望方差习题及答案

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

圆梦教育 离散型随机变量的分布列、期望、方差专题

姓名:__________班级:__________学号:__________

1.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率;

(Ⅱ)用?表示红队队员获胜的总盘数,求?的分布列和数学期望E?.

12.已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽

3实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.

(1) 第一小组做了三次实验,求实验成功的平均次数;

(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.

第1页 共5页

3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为

概率论分布列期望方差习题及答案

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

圆梦教育 离散型随机变量的分布列、期望、方差专题

姓名:__________班级:__________学号:__________

1.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率;

(Ⅱ)用?表示红队队员获胜的总盘数,求?的分布列和数学期望E?.

12.已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽

3实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.

(1) 第一小组做了三次实验,求实验成功的平均次数;

(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.

第1页 共5页

3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为

伽玛分布

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

伽玛分布 维基百科,自由的百科全书 跳转到: 导航, 搜索 Gamma 概率密度函数 累积分布函数 参数 shape (real) scale (real) 支撑集概率密度函數累积分布函数期望值中位数no simple closed form 众数for 方差偏度峰度信息熵 动差生成函数for 特性函数伽玛分布(Gamma distribution)是统计学的一种连续概率函数。Gamma分布中的参数α,称为形状参数(shape parameter),β称为尺度参数(scale parameter)。 \\实验定义与观念

假设随机变量X为 等到第α件事发生所需之等候时间

[编辑] 概率函数

令X?Γ(α,β);且令: (即)。

,X > 0

其中Gamma函数之特征

[编辑] Gamma积分

[编辑] 动差母函数、概率生成函数、期望值、变异数 Gamma分配之动差母函数m.g.f

概率生成函数 p.g.f

期望值

方差

[编辑] Gamma的加成性

当两随机变量服从Gamma分配,互相独立,且单位时间内频率相同时,Gamma分配具有加成性。

1-7-2随机变量分布列、期望、方差

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

1-7-2 随机变量分布列、期望、方差

1.在一次考试中,5名同学的数学、物理成绩如下表所示:

学生 数学(x分) 物理(y分) A1 89 87 A2 91 89 A3 93 89 A4 95 92 A5 97 93 (1)根据表中数据,求物理分y对数学分x的回归方程; (2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X).

n

?xi-x??yi-y?^^^^^i∑^-=1附:回归方程y=bx+a中,b=,a=y-bx,其中x,y为样本平n∑ ?xi-x?2=

i1

均数.

2.某学校举行知识竞赛,第一轮选拔共设有1,2,3三个问题,每位参赛者按问题1,2,3的顺序做答,竞赛规则如下:

①每位参赛者计分器的初始分均为10分,答对问题1,2,3分别加1分,2分,3分,答错任一题减2分;

②每回答一题,积分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于12分时,答题结束,进入下一轮;当答完三题,累计分数仍不足12分时,答题结束,淘汰出局.

311

已知甲同学回答1,2,3三个问题正确的概率依次为,,,且各题回答正确与否相

第一章 自然伽马测井和自然伽马能谱测井 - 图文

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

‘0、核测井原理概述

核测井这门课程是和《原子核物理基础》是相互衔接的一门课程。本课程的重点是自然伽马测井自然伽马能谱测井,密度测井,中子测井以及核磁测井方法原理的讨论,资料的解释应用只稍作提及。

核测井,在核磁共振测井出现之前,我们又叫做放射性测井。放射性测井主要有三种方法:自然伽马测井测量地层的天然放射性;密度测井测量人工伽马源与地层作用后的?射线;中子测井利用中子作用于地层作用,然后测量经地层慢化后的中子,或中子核反应产生的伽马射线。这些测井方法主要用于了解地层的岩性和测量地层的孔隙度。密度测井与中子测井结合也可用来判别储集层空间中的流体性质。

核磁测井严格地说不是放射性测井方法,核磁测井利用氢核具有核磁在外磁场作用下的共振吸收特性,测量地层中的氢核的状态和数目,进而求得地层的孔隙度,束缚水饱和度等参数。

第一章 自然伽马测井和自然伽马能谱测井

自然伽马测井测量地层中天然放射性矿物放出的伽马射线来了解地层的岩性等方面的特性。本章从五个方面来讨论:1.伽马射线的测量(自然伽马测井的物理基础);2.岩石的放射性来源(自然伽马测井的地质基础);3.井中自然伽马的测量;4. 自然伽马测井资料的应用;5.最后介绍自然伽马能谱测井的原理及其应用。