高等数学直线方程的五种形式

“高等数学直线方程的五种形式”相关的资料有哪些?“高等数学直线方程的五种形式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学直线方程的五种形式”相关范文大全或资料大全,欢迎大家分享。

高等数学7.8空间直线及其方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

§7.8 空间直线及其方程一、空间直线的一般方程 二、空间直线的对称式方程与参数方程方向向量、直线的对称式方程、直线的参数方程

三、两直线的夹角两直线的夹角及夹角余弦、两直线平行与垂直的条件

四、直线与平面的夹角直线与平面的夹角、夹角正弦 直线与平面平行与垂直的条件

五、杂例平面束

一、空间直线的一般方程空间直线L可以看作是两个平面 1和 2的交线. 如果两个相交平面 1和 2的方程分别为 A 1x B 1y C 1z D 1 0和A 2x B 2y C 2z D 2 0, z 那么直线L上的任一点的坐标应满足方程组 A1 x B1 y C1 z D1 0, A2 x B2 y C2 z D2 0.

1L

2

反过来,如果点M不在直线 L 上, 那么它不可能满足上述方程组.因此, 直线L可以用上述方程组来表示. 上述方程组叫做空间直线的一般方程. x O y

二、空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线,这个向量就叫做这 条直线的方向向量. z s

O x

y

二、空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线,这个向量就叫做这 条直线

高等数学7.8空间直线及其方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

§7.8 空间直线及其方程一、空间直线的一般方程 二、空间直线的对称式方程与参数方程方向向量、直线的对称式方程、直线的参数方程

三、两直线的夹角两直线的夹角及夹角余弦、两直线平行与垂直的条件

四、直线与平面的夹角直线与平面的夹角、夹角正弦 直线与平面平行与垂直的条件

五、杂例平面束

一、空间直线的一般方程空间直线L可以看作是两个平面 1和 2的交线. 如果两个相交平面 1和 2的方程分别为 A 1x B 1y C 1z D 1 0和A 2x B 2y C 2z D 2 0, z 那么直线L上的任一点的坐标应满足方程组 A1 x B1 y C1 z D1 0, A2 x B2 y C2 z D2 0.

1L

2

反过来,如果点M不在直线 L 上, 那么它不可能满足上述方程组.因此, 直线L可以用上述方程组来表示. 上述方程组叫做空间直线的一般方程. x O y

二、空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线,这个向量就叫做这 条直线的方向向量. z s

O x

y

二、空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线,这个向量就叫做这 条直线

高等数学 微分方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第十二章 微分方程

§ 1 微分方程的基本概念

1、由方程x2-xy+y2=C所确定的函数是方程( )的解。 A. (x-2y)y?=2-xy B.(x-2y)y?=2x-y C.(x-2)dx=(2-xy)dy D.(x-2y)dx=(2x-y)dy

2、曲线族y=Cx+C2 (C为任意常数) 所满足的微分方程 ( ) 4.微分方程y?= A.dy?dx1写成以

2x?yy为自变量,x为函数的形式为( )

1 C. x?=2x-y D. y?=2x-y 2x?y12x?y B.dx?dy§2 可分离变量的微分方程

1.方程P(x,y)dx+Q(x,y)dy=0是( )

A.可分离变量的微分方程 B.一阶微分方程的对称形式, C.不是微分方程 D.不能变成

dxQ(x,y)?? dyP(x,y)2、方程xy?-ylny=0的通解为( )

A y=ex B. y=Cex C.y=ecx D.y=e

高等数学-第7章 微分方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

章节 第七章 微分方程 §1 微分方程的基本概念 §2可分离变量微分方程 课时 2 教 学 掌握微分方程的基本概念,可分离变量微分方程的解法 目 的 教学 重点 及 突出 方法 可分离变量微分方程的解法 教学 难点 及 突破 方法 可分离变量微分方程的解法 相关 参考 资料

《高等数学(第三册)》(物理类),文丽,吴良大编,北京大学出版社 《大学数学 概念、方法与技巧》(微积分部分),刘坤林,谭泽光编,清华大学出版社 教学思路、主要环节、主要内容 7.1 微分方程的基本概念 在许多科技领域里,常会遇到这样的问题: 某个函数是怎样的并不知道,但根据科技领域的普遍规律,却可以知道这个未知函数及其导数与自变量之间会满足某种关系。下面我们先来看一个例子: 例题:已知一条曲线过点(1,2),且在该直线上任意点P(x,y)处的切线斜率为2x,求这条曲线方程 解答:设所求曲线的方程为y=y(x),我们根据导数的几何意义,可知y=y(x)应满足方程: 我们发现这个方程中含有未知函数y的导数。这里我们先不求解。 微分方程的概念 我们把含有未知函数的导数(或微分)的方程称为微分方程。 在一个微分方程中所出

高等数学-第7章 微分方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

章节 第七章 微分方程 §1 微分方程的基本概念 §2可分离变量微分方程 课时 2 教 学 掌握微分方程的基本概念,可分离变量微分方程的解法 目 的 教学 重点 及 突出 方法 可分离变量微分方程的解法 教学 难点 及 突破 方法 可分离变量微分方程的解法 相关 参考 资料

《高等数学(第三册)》(物理类),文丽,吴良大编,北京大学出版社 《大学数学 概念、方法与技巧》(微积分部分),刘坤林,谭泽光编,清华大学出版社 教学思路、主要环节、主要内容 7.1 微分方程的基本概念 在许多科技领域里,常会遇到这样的问题: 某个函数是怎样的并不知道,但根据科技领域的普遍规律,却可以知道这个未知函数及其导数与自变量之间会满足某种关系。下面我们先来看一个例子: 例题:已知一条曲线过点(1,2),且在该直线上任意点P(x,y)处的切线斜率为2x,求这条曲线方程 解答:设所求曲线的方程为y=y(x),我们根据导数的几何意义,可知y=y(x)应满足方程: 我们发现这个方程中含有未知函数y的导数。这里我们先不求解。 微分方程的概念 我们把含有未知函数的导数(或微分)的方程称为微分方程。 在一个微分方程中所出

高等数学

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

AnnalsofMathematics,157(2003),919–938

LargeRiemannianmanifolds

whichare exible

ByA.N.Dranishnikov,StevenC.Ferry,andShmuelWeinberger*

Abstract

Foreachk∈Z,weconstructauniformlycontractiblemetriconEuclideanspacewhichisnotmodkhypereuclidean.WealsoconstructapairofuniformlycontractibleRiemannianmetricsonRn,n≥11,sothattheresultingmani-foldsZandZ areboundedhomotopyequivalentbyahomotopyequivalencewhichisnotboundedlyclosetoahomeomorphism.Weshowthatfortheself(Z)→K (C (Z))fromlocally -spacestheC -algebraassemblymapK

niteK-homologytotheK-th

高等数学常微分方程讲义,试题,答案

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第四章 常微分方程

§4.1 基本概念和一阶微分方程

(甲) 内容要点 一、基本概念

1、 常微分方程和阶 2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程 二、变量可分离方程及其推广

1、

dy

p(x)Q(y)dx

(Q(y) 0) 2、齐次方程:

dy dx

y f x

三、一阶线性方程及其推广

1、

dydy

P(x)y Q(x) 2、 P(x)y Q(x)y dxdx

( 0,1)

四、全微分方程及其推广(数学一)

1、 P(x,y)dx Q(x,y)dy 0,满足

Q P

x y

2、 P(x,y)dx Q(x,y)dy 0,五、差分方程(数学三) (乙)典型例题 例1、求y x

2

2

Q p (RQ) (RP)

但存在R(x,y),使 x y x y

dydy

xy的通解。 dxdx

解:y (x xy)

22

dy

0dx

y

dyy2 x dxxy x2 y

1 x

2

yduu2

令 u,则u x udx x(1 u)du 0

xdxu 11 udx

du u x C1 ln|xu| u C1

xu e

例2

C1 u

ce, y

高等数学(一)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

编号:

《高等数学(一)》课 程 自 学 辅 导 材 料 配套教材: 《高等数学(一)微积分》 主 编: 章学诚 出 版 社: 武汉大学出版社 版 次: 2004年版 适应层次: 本 科 内 部 使 用 2012年9月 ●●●●●

目 录 第一部分 自学指导 第1章:函数及其图形…………………………………………………………………3 第2章:极限和连续……………………………………………………………………3 第3章:一元函数的导数和微分………………………………………………………3 第4章:微分中值定理和导数的应用…………………………………………………3 第5章:一元函数积分学………………………………………………………………3 第6章:多元函数微积分………………………………………………………………3 第二部分 复习思考题 一.单选题 ……………………………………………………………………………4 二.填空题 ……………………………………………………………………………24 三.计算题 ………………………

055--2.2.2 直线方程的几种形式(1)学习专用

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

教育资源

高一数学(2019级)导学案

课型:新授课 编制人: 年级主任: 班级: 姓名: 编号:055 2.2.2 直线方程的几种形式(1) 一、学习目标 1、掌握坐标平面内确定一条直线的几何要素. 2、会求直线的点斜式方程与斜截式方程. 3、了解斜截式与一次函数的关系. 二、基础知识 1、直线的点斜式方程和斜截式方程 名称 已知条件 点 斜 式 斜 截 式 点P(x0,y0) 和斜率k 斜率k和在y 轴上的截距b ________ 存在 斜率 示意图 方程 ________ ________ 使用范围 斜率 存在 2、对于直线l1:y=k1x+b1,l2:y=k2x+b2, (1)l1∥l2?________________________;(2)l1⊥l2?________________. 三、基础自测: 1、方程y=k(x-2)表示( ) A.通过点(-2,0)的所有直线 B.通过点(2,0)的所有直线 C.通过点(2,0)且不垂直于x轴的所有直线 D.通过点(2,0)且除去x轴的所有直线 2、已知直线的倾

高等数学教材

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

df(x)dx 与 dx解 不相等.设F?(x)?f(x),则

例1 (E01) 问

????f?(x)dx是否相等?

d??f(x)dx??dx(F(x)?C)?F?(x)?0?f(x)

d而由不定积分定义?f?(x)dx?f(x)?C,所以??f(x)dx???f?(x)dx.

dxddx例3 (E03) 检验下列不定积分的正确性:

(1)xcosxdx?xsinx?C;(2)xcosxdx?xsinx?cosx?C; 解 (1)错误. 因为对等式的右端求导,其导函数不是被积函数:

???xsinx?C???xcosx?sinx?0?xcosx.

(2)正确. 因为

?xsinx?cosx?C???xcosx?sinx?sinx?0?xcosx.

1.填空题

(1)若f(x)的一个原函数为lnx2,则f(x)? 。 解:因为?f(x)dx?lnx2?c 所以f(x)?2x2? x2x(2)若?f(x)dx?sin2x?c,则f(x)? . 解:f(x)?2cos2x

(3)若?f(x)dx?xlnx?c,则f?(x)? . 解:f(x)?lnx?1,f?(x)?(4)d?e?xd