与同类项目的对比分析
“与同类项目的对比分析”相关的资料有哪些?“与同类项目的对比分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“与同类项目的对比分析”相关范文大全或资料大全,欢迎大家分享。
3.4.1同类项
3.4整式的加减 1、同类项
学习目标:
理解同类项的概念,能准确判断同类项。 学习重点:
理解同类项的概念,会判断同类项 学习难点:
正确识别同类项。 学习过程:
一、自主研学:自学研读课本P101—P102页,并完成以下内容。
多项式3x2y?4xy2?3?5x2y?2xy2?5有______项,它们分别是_______________________ _____________________。我们常把具有相同特征的事物归为一类。在上述6项中,我们可把3x2y与___________归为一类。?4xy2与_______归为一类。5与_________归为一类。 二、合作探究:
单项式3x2y与5x2y所含字母都是______________。x的指数都是___________,y的指数都是___________。像这种所含字母__________,并且相同字母的指数也____________的项叫做同类项。?3与5都是_________项,所以所有的常数项都是________________。
1、指出下列多项式中的同类项:
⑴3x?2y?1?3y?2x?5
13⑵3x2y?2xy2?xy2?x2y
32解:
⑴_______与____
什么叫做同类项?怎样合并同类项?
什么叫做同类项?怎样合并同类项?
在多项式中,所含字母相同,并且相同的字母的次数也相同的项叫做同类项.例如 多项式3a-4ab-5a-7+15ab+29中
3a与-5a是同类项
-4ab与15ab是同类项
-7和29也是同类项
多项式中的同类项可以合并,合并同类项的法则是;同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
例1 合并下列各式的同类项.
(1)4x-y+25x-18y-30x
解:(1)4x-y+25x-18y-30x
=(4+25-30)x+(-1-18)y
=-x-19y
在计算熟练以后,每项系数的计算可以直接写出结果,不必再有过程,在求一个多项式的值时,如多项式中有同类项,先合并同类项,再把字母的值代入,就比较简单了,如果两个同类项的系数互为相反数,合并同类项后,因为它们的系数为零,所以这两项可以互相抵消。
例2 求代数式(2a+7b)-8(a+5b)+12(2a+7b)-7(a+5b)+7(2a+7b)的值.其中a=9,b=-3.
解:(2a+7b)-8(a+5b)+12(2a+7b)-7(a+5b)+7(2a+7b)
=(1+12+7)(2a+7b)+(-8-7)(a+5b)
=20(2a+7b)-15(a+5b)
当a=9,b=
什么叫做同类项?怎样合并同类项?
什么叫做同类项?怎样合并同类项?
在多项式中,所含字母相同,并且相同的字母的次数也相同的项叫做同类项.例如 多项式3a-4ab-5a-7+15ab+29中
3a与-5a是同类项
-4ab与15ab是同类项
-7和29也是同类项
多项式中的同类项可以合并,合并同类项的法则是;同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
例1 合并下列各式的同类项.
(1)4x-y+25x-18y-30x
解:(1)4x-y+25x-18y-30x
=(4+25-30)x+(-1-18)y
=-x-19y
在计算熟练以后,每项系数的计算可以直接写出结果,不必再有过程,在求一个多项式的值时,如多项式中有同类项,先合并同类项,再把字母的值代入,就比较简单了,如果两个同类项的系数互为相反数,合并同类项后,因为它们的系数为零,所以这两项可以互相抵消。
例2 求代数式(2a+7b)-8(a+5b)+12(2a+7b)-7(a+5b)+7(2a+7b)的值.其中a=9,b=-3.
解:(2a+7b)-8(a+5b)+12(2a+7b)-7(a+5b)+7(2a+7b)
=(1+12+7)(2a+7b)+(-8-7)(a+5b)
=20(2a+7b)-15(a+5b)
当a=9,b=
3.4.1同类项
3.4整式的加减 1、同类项
学习目标:
理解同类项的概念,能准确判断同类项。 学习重点:
理解同类项的概念,会判断同类项 学习难点:
正确识别同类项。 学习过程:
一、自主研学:自学研读课本P101—P102页,并完成以下内容。
多项式3x2y?4xy2?3?5x2y?2xy2?5有______项,它们分别是_______________________ _____________________。我们常把具有相同特征的事物归为一类。在上述6项中,我们可把3x2y与___________归为一类。?4xy2与_______归为一类。5与_________归为一类。 二、合作探究:
单项式3x2y与5x2y所含字母都是______________。x的指数都是___________,y的指数都是___________。像这种所含字母__________,并且相同字母的指数也____________的项叫做同类项。?3与5都是_________项,所以所有的常数项都是________________。
1、指出下列多项式中的同类项:
⑴3x?2y?1?3y?2x?5
13⑵3x2y?2xy2?xy2?x2y
32解:
⑴_______与____
同类汽车对比分析
有关于同类汽车在各个方面的不同于相同之处·····
汽车造型设计概论
班级:T1113-10 姓名:刘权
学号:20110130909 日期:2014/4/10 指导老师:王中
有关于同类汽车在各个方面的不同于相同之处·····
奥迪A系汽车外部造型对比分析
奥迪A系列车型有很多,主要包括A1至A9等主要车型,它们之间各有不同但也有联系和共同之处。
奥迪A1:作为一款个性小车,A1受到了不少年轻人的追捧,把它列为和宝马MINI同类型的个性时尚小型车。从A1的定价策略来看也是步步紧盯MINI车型。除去选装配置,A1三款车型的外观区别很小,奥迪A1长3.954
米,宽1.740米,高只有1.416米,轴距为2.469米,是一个标准的“小个头”。然而,宽大低矮的车身比例配合短前悬的设
计散发出超越级别的动感气息。不仅如此,极具魅力的设计还来自更多细节:奥迪品牌
同类汽车对比分析
有关于同类汽车在各个方面的不同于相同之处·····
汽车造型设计概论
班级:T1113-10 姓名:刘权
学号:20110130909 日期:2014/4/10 指导老师:王中
有关于同类汽车在各个方面的不同于相同之处·····
奥迪A系汽车外部造型对比分析
奥迪A系列车型有很多,主要包括A1至A9等主要车型,它们之间各有不同但也有联系和共同之处。
奥迪A1:作为一款个性小车,A1受到了不少年轻人的追捧,把它列为和宝马MINI同类型的个性时尚小型车。从A1的定价策略来看也是步步紧盯MINI车型。除去选装配置,A1三款车型的外观区别很小,奥迪A1长3.954
米,宽1.740米,高只有1.416米,轴距为2.469米,是一个标准的“小个头”。然而,宽大低矮的车身比例配合短前悬的设
计散发出超越级别的动感气息。不仅如此,极具魅力的设计还来自更多细节:奥迪品牌
合并同类项教学设计
合并同类项教学设计
龚店乡中 李晓勤
●课题
合并同类项
●教学目标
知识目标
1.同类项的概念.
2.合并同类项的法则及其应用.
能力目标
1.在具体情境中认识同类项.
2.通过对具体问题的分析,探索合并同类项的法则. 3. 能进行同类项的合并.
情感态度与价值观
1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物间的内在联系. 2.培养学生的创新意识和应用数学的意识.
●教学重点
同类项的概念及合并同类项的方法
●教学难点
合并同类项的方法
●教学方法
引导、启发、探求.
●教学过程
一、温故而知新
组成代数式3x-2x+1的项有哪些?每一项的系数分别是什么?
2
复习旧知识,为新知识做铺垫,激发学生求知欲。 这节课继续探究合并同类项。
二、巧设情景问题,授新课
1.幻灯片出示:几幅图片
问题;商场里的物品是怎样摆放的? (生)分类摆放的。
2.幻灯片出示:观察下列各单项式,把你认为相同类型的式子归类,并说出分类依据。 8n -7ab 2ab 6xy 5n -3xy
【创设情境将生活中的分类思想引到数学中来。]
2
2
三、探索研讨。
(一)认识同类项
1.根据学生的分类,得出:
像这样所含字母相同,相
《合并同类项》教学设计
《合并同类项》教学设计
江西省于都县第二中学张文荣(342300)
教学目标
1.在具体的情境中,认识同类项;
2.通过对具体问题的分析及运用分配律,了解合并同类项的法则,并能进行同类项的合并。
教学重点
认识同类项。
教具
多媒体、卡片(10张)。
教学过程设计
一、具体情境引入
打开多媒体,银幕上出现了一片绿茵茵的草地,8只小狗和5只小猫在追逐、嬉戏。画外音响起:银幕上的小狗、小猫能放在一起相加吗?为什么?
(学生们不假思索地回答:不能。因为它们不是同类动物。)
这时,画面上中又蹦出了6只小狗、4只小猫。画外音:现在银幕上有几只小狗?几只小猫?并说出理由。学生们脱口而出:“有14只小狗、9只小猫。因为狗和狗是同类,猫和猫是同类。”(板书课题)
“你能用同类项表示银幕上的问题吗?”[大多数同学举起了手:式子可以表示(板书:8只小狗+ 6只小狗;5只小猫+ 4只小猫)]
(通过设置具体的情境,使问题具体、形象、生动,可以调动学生的多种感官同时参与学习,便于知识的理解,更激发起学生强烈的求知欲。)
二、问题设置,步步引导
画外音响起:假设x表示狗这类动物,y表示猫这类动物,画面上出现:“这情境用代数式可表示为____________,怎样计算的?”(同学们议论纷纷,一会儿,同学
3.4.2合并同类项1
3.4.2整式的加减——合并同类项(1)
一、回顾旧知识,引入新知识 1.请找出多项式 3x2y?4xy2?3?5x2y?2xy2?5中的同类项:
2.你能找出下面这两个多项式有什么关系吗?(小组讨论)
①2a?5a?3b; ②7a?3b
3.尝试完成:合并下列多项式的同类项并尝试总结合并同类项的方法。 ①4m?3m; ②3m2?2m2; ③5m3?2m3 = = = = = = 合并同类项法则:
________________________________________________________________
注意: ①合并同类项的“一变两不变”:系数变,字母和字母的指数不变;
②把同类项结合在一起时要连同项的符号一起移动,各括号间用加号连接,不是同类项的不能合并,别漏掉没有同类项的项;
③合并同类项时可以用不同的记号标出同类项以减少运算的错误.
二、例题探究 例3.合并下
第7讲 物以类聚 - 话说同类项
新课标七年级数学竞赛讲座
第七讲 物以类聚——话说同类项
俗话说“物以类聚,人以群分”.在数学中,我们把整式中那些含相同的字母、并且相同字母的次数也分别相同的单项式看作一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.整式的加减实质就是去括号合并同类项.
整式的加减这一章涉及到许多概念,准确地掌握这些概念并注意它们的区别与联系是解相关问题的基础,归纳起来就是要注意以下几点:
理解“三式”和“四数”的概念、熟悉“两种排列”、掌握三个法则.
解与整式加减相关问题时,有括号先去括号,有同类项先合并同类项,这样能使解题过程大为简化.
例题
【例1】 当x的取值范围为 时,式子?4x?4?7x?1?3x?4的值恒为一个常数,这个值是 .
(北京市“迎春杯”竞赛题)
思路点拨 去掉绝对值符号、合并同类项后,式子应不再含“x”的项,由此得出x的取值范围.
注:数学概念是容的基础.是数学推理和论证的基础.科学研究表明,概念的形成过程中,人们的心理活动经历着以下阶段:
(1)辨别不同的事物; (2)抽象一类事物的共同属性;