相似三角形中的反A型模型

“相似三角形中的反A型模型”相关的资料有哪些?“相似三角形中的反A型模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“相似三角形中的反A型模型”相关范文大全或资料大全,欢迎大家分享。

相似三角形反A测试

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

相似三角形试题(反A型)满分100分

班级:___________ 姓名:__________

一.选择题 二.填空题 三、解答题 总分 请将选择题答案写在下面表格处

1 2 3 4 5 6 7 8 9 10 { }一.选择题 (每题3分,共30分)

1. 如图,Rt△ABC中,CD是斜边上的高,其中与△ABC相似的有 ------------------- ( )个 A 1 B 2 C 3 D 4

2. 如图,D为△ABC的边BC上一点,连结AD,要使△ABD∽△CBA,应具备 ------( ) A

ACABABBDBDABACAD

= B = C = D = CDBCCDADABBCCDBC

3. 如图,点B、D和C、E分别在∠A的两边上,BE⊥AC于E,CD⊥AB于D,BE与CD相交于点F,则图中相似的三角形共有 ------------------------------------------------

相似三角形几种基本模型

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

相似三角形几种基本模型

经典模型

∽平移平行型旋转180°平行型翻折180°翻折180°一般特殊斜交型斜交型特殊一般平移双垂直斜交型特殊一般双垂直一边平移翻折180°

“平行旋转型”

图形梳理:

AEE'BFBF'AF'E'AAFE'EBF'FF'EFCAEF旋转到AE‘F’BECAEF旋转到AE‘F’CAEF旋转到AE‘F’CAEF旋转到AE‘F’

特殊情况:B、E'、F'共线

1

AEE'BFBF'EE'AF'FCAEF旋转到AE‘F’CAEF旋转到AE‘F’

C,E',F'共线

E'EAE'AF'F'FEFBCAEF旋转到AE‘F’BCAEF旋转到AE‘F’

相似三角形有以下几种基本类型: ① 平行线型

常见的有如下两种,DE∥BC,则△ADE∽△ABC

AEDADEB

CBC

② 相交线型

常见的有如下四种情形,如图,已知∠1=∠B,则由公共角∠A得,△ADE∽△ABC

AECB1EBCDA

如下左图,已知∠1=∠B,则由公共角∠A得,△ADC∽△ACB 如下右图,已知∠B=∠D,则由对顶角∠1=∠2得,△ADE∽△ABC

1D

2

AED211CCABDB

③ 旋转型

已知

相似三角形常见模型(总结)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

第一部分相似三角形模型分析一、相似三角形判定的基本模型认识

(一)A字型、反A字型(斜A字型)

B(平行)

B

(不平行)

(二)8字型、反8字型

B

C

B

C

(蝴蝶型)(平行)

(不平行)

(三)母子型

B

(四)一线三等角型:

三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

(五)一线三直角型:

(六)双垂型:

C D

二、相似三角形判定的变化模型

旋转型:由A 字型旋转得到。

8字型拓展

C B E

D A 共享性G B E

F

一线三等角的变形一线三直角的变形

第二部分 相似三角形典型例题讲解

母子型相似三角形

例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2

例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.

求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠.

A C D E B

例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于

D ,CG ∥AB ,BG 分别交AD 、AC 于

E 、

F .

求证:EG EF BE ?=2

相关练习:

1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的

相似三角形常见模型(总结)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

第一部分相似三角形模型分析一、相似三角形判定的基本模型认识

(一)A字型、反A字型(斜A字型)

B(平行)

B

(不平行)

(二)8字型、反8字型

B

C

B

C

(蝴蝶型)(平行)

(不平行)

(三)母子型

B

(四)一线三等角型:

三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

(五)一线三直角型:

(六)双垂型:

C D

二、相似三角形判定的变化模型

旋转型:由A 字型旋转得到。

8字型拓展

C B E

D A 共享性G B E

F

一线三等角的变形一线三直角的变形

第二部分 相似三角形典型例题讲解

母子型相似三角形

例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2

例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.

求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠.

A C D E B

例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于

D ,CG ∥AB ,BG 分别交AD 、AC 于

E 、

F .

求证:EG EF BE ?=2

相关练习:

1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的

相似三角形的性质

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

篇一:相似三角形的定义与性质

同学个性化教学设计

年 级: 九年级教 师: 张永慧科 目:数学 班 主 任: 朱敏_ 日 期: _时 段: ___

1 海到无边天作岸,山高绝顶我为峰

校长签字: ___________日期3 海到无边天作岸,山高绝顶我为峰

篇二:相似三角形性质

精锐教育学科辅导讲义

篇三:相似三角形的性质 导学案

《相似三角形的性质》 学案

【学习目标】

知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。 过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。 情感与价值观:感受数学学习中的推理过程,积极参与推理活动。

【温故知新】

1、相似三角形的判定方法有哪一些?

2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE 与△ABC的相似比为 。 3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm, AC=2cm,则AC= cm, BC=cm。

''

''

'''

''

B

【学习过程】

1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.

例如,如图:△ABC和△A′B

相似三角形中证明技巧

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

相似三角形中的辅助线添加和相似三角形证明技巧

在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:

一、作平行线 例1. 如图, 的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BCABC延长线相交于F,求证:

BFBD

CFCE

B

A C

F F

证明:过点C作CG//FD交AB于G

小结:本题关键在于AD=AE这个条件怎样使用。由这道题还可以增加一种证明线段相等的方法:相似、成比例。

例2. 如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:AB·

DF=AC·EF。

分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。

ABEF

欲证AB DF AC ,而这四条线段所在的两个三角形显然

ACDF

不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平

行线。

方法一:过E作EM//AB,交BC于点M,则△EMC∽△ABC(两角对应相等,两三角形相似)。

EM AC AB EC

相似三角形说课稿

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

《相似三角形》说课稿

各位领导、老师下午好!

今天我说的内容是:人教版九年级数学下册《相似三角形》

我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价6个方面来对本课进行说明 一、 说教材

1、教材所处的地位和作用

《相似三角形》是义务教育数学课程标准实验教材。相似三角形的知识是在全等三角形的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。同时对后续教学内容起奠基作用,也为学生今后学习和生活更好的运用数学做准备。 2、教学目标

(1)知识目标 探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

(2)能力目标 通过教学渗透类比的思想方法,培养学生探究新知识的能力及运用所学知识解决实际问题的能力。

(3)情感目标: 让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

3、教学重点、难点:

本课重点是深入理解认识相似三角形的概念 难点是 ①相似三角形性质的应用;

②促进学生有条理的思

相似三角形教案

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

相似三角形教案

一、教学目标

知识与技能

1. 理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。

2. 能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。

过程与方法

1. 经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。

2.在探索实践中培养学生分析问题、解决问题的能力。

情感态度与价值观

1. 在获得知识的过程中培养学习的自信心 ,知道数学来源于生活有服务于生活。

2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.

二、重点难点

重点

理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。

相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.

三、学情分析

相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。

四、教学过程设计

教学知: ABC∽ A’B’C’,根据相似的定义,我们有哪些结论?

2、

相似三角形的比例关系及相似三角形证明的变式

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

相似三角形的比例关系及相似三角形证明的变式

【知识疏理】

一, 相似三角形边长比,和周长比以及面积比的关系!

若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。

A A'

B'C'CB

图(4)图1

二, 相似三角形证明的变式

1,相似三角形当中常以乘积的形式出现,如:

例1、 已知:如图1,BE、DC交于点A,∠E=∠C。求证:DA·AC=BA·AE

E D

A

CB

图2

题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。

2,对特殊图形的认识

例2、已知:如图3,Rt△ABC中,∠ABC=90o,BD⊥AC于点D。 AD

BC

图3

(1) 图中有几个直角三角形?它们相似吗?为什么

相似三角形题型总结

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

一.解答题(共21小题)

1.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N. (1)在以下结论①∠FDB=∠FEB;②MC垂直平分BD;③△DFN∽△EBD中正确的有 _________ ,请选择一个你认为正确的结论进行证明.

(2)若MC=,求BF的长.

2.(2011?聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G

2

重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm) (1)当t=1秒时,S的值是多少?

(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;

(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.

3.(2010?崇川区模拟)用一副三角板拼成如图①所示的四边形ABCD,其中∠ADC=∠ACB=90°,∠B=60°,AD=DC=cm.若把△ADC的顶点C