矩阵范数的定义
“矩阵范数的定义”相关的资料有哪些?“矩阵范数的定义”相关的范文有哪些?怎么写?下面是小编为您精心整理的“矩阵范数的定义”相关范文大全或资料大全,欢迎大家分享。
1.2 向量范数与矩阵范数
matlab
§1.4 向量和矩阵范数 向量范数 ( vector norms ) 定义1 定义 :
(3) || x + y || ≤|| x || +|| y ||常用向量范数: 常用向量范数:v || x || 1 =
v v v v (1) || x || ≥ 0 ; || x || = 0 x = 0 v v (2) ||v x || =| λ |v|| x || v 对任意 λ∈C λ v
Rn空间的向量范数 空间的向量范数
v v n || · || ,对任意 x, y ∈ R 满足下列条件 对任意
Σi=1
n
| xi |
v || x || =2
Σ
n
| x |i
2
i=1
v || x || ∞ = max | x i |1≤ i ≤ n
matlab
主要性质 主要性质性质1:‖-x‖=‖x‖ 性质1:‖ 1: 性质2: ‖x‖-‖y‖|≤‖x性质2:|‖x‖-‖y‖|≤‖x-y‖ 性质3: 向量范数‖x‖是 上向量x的连续函数. 性质3: 向量范数‖x‖是Rn上向量x的连续函数. 范数等价:设‖·‖A 和‖·‖B是R上任意两种范数,若存在 上任意两种范数, 范数等价: ‖ ‖ 常数 C1、C2 >
矩阵定义及练习
矩阵的Jordan标准形有两个局限,其一、是只有方阵才能求其Jordan标准形;其二、Jordan标准形毕竟不如对角矩阵来得方便。本节讨论的矩阵奇异值分解,将克服这些局限性。 定理1如果A为n阶复矩阵,则有:
1)矩阵AA,AA的特征值都是非负实数; 2)矩阵AA与AA的非零特征值都相同。
n证:1)设??C为AA的特征值?所对应的特征向量,则AA是Hermite矩阵,所以?HHHHHH是实数;并且0??A?,A???因为??0,所以??0。
??,AHA????,???????,??,
?同理可证,AA的特征值也是非负实数。
3)将AA的特征值按顺序记为:?1??2????r??r?1??r?2????n?0, 设?i?CHHHn?i?1,2,?,r?为AHA的非零特征值?i?i?1,2,?,r?所对应的特征向量,
?i?i?1,2,?,r?,有(AAH)A?i=?iA?i?i?1,2,?,r?,
则由AA?i=?i因为A?i是非零向量,所以?i也是AAH的非零特征值;
HH同理可证,AA的非零特征值也是AA的非零特征值。
以下证明AA与AA的非零特征值完全相同,这只要证明AA与AA的非零特征值的代数重数相同即可。
设y1,y2,?,yp为
向量和矩阵的范数_病态方程组_解线性方程组的迭代法
3.4 向量和矩阵的范数
为了研究线性方程组近似解的误差估计和迭代法的收敛性,我们需要对Rn(n维
向量空间)中的向量或Rnxn中矩阵的“大小”引入一种度量,——向量和矩阵的范 数。
向量和矩阵的范数
在一维数轴上,实轴上任意一点x到原点的距离用|x|表示。而任意两点x1,
x2之间距离用| x1-x2 |表示。
向量和矩阵的范数
而在二维平面上,平面上任意一点P(x,y)到原点的距离用 x 2 y 2 | OP 表示。而平面上 | 任意两点P1(x1,y1),P2(x2,y2)的距离用 表示。 推广到n维空间,则称为向量范数。
| P1 P2 | ( x1 x 2 ) ( y1 y 2 )2
2
向量范数定义3.4.1 设任一向量x R n , 按某一确定的
x ||, 且满足 : 1)非负性: || x || 0,当且仅当x 0时, || x || 0; 2)奇次性: || kx || | k ||| x ||, k R; 3)三角不等式:对任意 x, y R , 都有 || x y || || x || || y || ,法则对应于一非负实数 ||n
则称 || x || 为向量x的范数。
常见的向量范数设向
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特
第五专题矩阵的数值特征
(行列式、迹、秩、相对特征根、范数、条件数)
一、行列式
已知A p×q, B q×p, 则|I p+AB|=|I q+BA|
证明一:参照课本194页,例.
证明二:利用AB和BA有相同的非零特征值的性质;
从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
?
二、矩阵的迹
矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。
定义:
n n
ii i
i1i1
tr(A)a
==
==λ
∑∑,etrA=exp(trA)
性质:
1. tr(A B)tr(A)tr(B)
λ+μ=λ+μ,线性性质;
2. T tr(A )tr(A)=;
3. tr(AB)tr(BA)=;
4.
1tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量;
;
6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑;
从Schur 定理(或Jordan 标准
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)
第五专题矩阵的数值特征
(行列式、迹、秩、相对特征根、范数、条件数)
一、行列式
已知A p×q, B q×p, 则|I p+AB|=|I q+BA|
证明一:参照课本194页,例.
证明二:利用AB和BA有相同的非零特征值的性质;
从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
?
二、矩阵的迹
矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。
定义:
n n
ii i
i1i1
tr(A)a
==
==λ
∑∑,etrA=exp(trA)
性质:
1. tr(A B)tr(A)tr(B)
λ+μ=λ+μ,线性性质;
2. T tr(A )tr(A)=;
3. tr(AB)tr(BA)=;
4.
1tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量;
;
6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑;
从Schur 定理(或Jordan 标准
向量和矩阵的范数_病态方程组_解线性方程组的迭代法
3.4 向量和矩阵的范数
为了研究线性方程组近似解的误差估计和迭代法的收敛性,我们需要对Rn(n维
向量空间)中的向量或Rnxn中矩阵的“大小”引入一种度量,——向量和矩阵的范 数。
向量和矩阵的范数
在一维数轴上,实轴上任意一点x到原点的距离用|x|表示。而任意两点x1,
x2之间距离用| x1-x2 |表示。
向量和矩阵的范数
而在二维平面上,平面上任意一点P(x,y)到原点的距离用 x 2 y 2 | OP 表示。而平面上 | 任意两点P1(x1,y1),P2(x2,y2)的距离用 表示。 推广到n维空间,则称为向量范数。
| P1 P2 | ( x1 x 2 ) ( y1 y 2 )2
2
向量范数定义3.4.1 设任一向量x R n , 按某一确定的
x ||, 且满足 : 1)非负性: || x || 0,当且仅当x 0时, || x || 0; 2)奇次性: || kx || | k ||| x ||, k R; 3)三角不等式:对任意 x, y R , 都有 || x y || || x || || y || ,法则对应于一非负实数 ||n
则称 || x || 为向量x的范数。
常见的向量范数设向
矩阵的意义
理解矩阵(一)
2006-04-02 00:30 54984人阅读 评论(145) 收藏 举报
前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。
可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊!
线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的
酉矩阵和正交矩阵的性质和应用
正交矩阵与酉矩阵的性质和应用
0 前 言.......................................................................................................................... 1 1 欧式空间和正交矩阵................................................................................................ 2
1.1 欧式空间.......................................................................................................... 2 1.2 正交矩阵的定义和性质.................................................................................. 2
1.2.1 正交矩阵的定义和判定....................................
矩阵的基本运算
矩阵的基本运算
(摘自:华东师范大学数学系;http://math.ecnu.edu.cn/)
§3.1 加和减 §3.2矩阵乘法
§3.2.1 矩阵的普通乘法 §3.2.2 矩阵的Kronecker乘法 §3.3 矩阵除法 §3.4矩阵乘方 §3.5 矩阵的超越函数 §3.6数组运算
§3.6.1数组的加和减 §3.6.2数组的乘和除 §3.6.3 数组乘方 §3.7 矩阵函数 §3.7.1三角分解 §3.7.2正交变换 §3.7.3奇异值分解 §3.7.4 特征值分解 §3.7.5秩
§3.1 加和减
如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如: A= B=
1 2 3 1 4 7 4 5 6 2 5 8 7 8 0 3 6 0 C =A+B返回:
矩阵的物理意义
矩阵的内涵
如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。
* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用?
* 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么?
* 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为