圆锥曲线定值例题及解析
“圆锥曲线定值例题及解析”相关的资料有哪些?“圆锥曲线定值例题及解析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线定值例题及解析”相关范文大全或资料大全,欢迎大家分享。
圆锥曲线考点例题与解析
学习必备 欢迎下载
圆锥曲线考点——例题
考点一 求圆锥曲线方程
求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结
合、等价转化、分类讨论、逻辑推理、合理
运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法. ●典例探究 [例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端点,B 、B ′是下底直径的两个端点,已知AA ′=14 m ,CC ′=18 m,BB ′=22 m,塔高
20 m. 建立坐标系并写出该双曲线方程. [例2]过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为2
2
的椭圆C
相交于A 、B 两点,直线y =2
1
x 过线段AB
的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程
. [例3]如图,已知△P 1OP 2的面积为
4
27
,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过
数学曲线方程及圆锥曲线典型例题解析
高考资源网(www.ks5u.com),您身边的高考专家
2008年高考数学曲线方程及圆锥曲线典型例题解析
一.知识要点
1.曲线方程
(1)求曲线(图形)方程的方法及其具体步骤如下: 步 骤 1、“建”:建立坐标系;“设”:设动点坐标。 含 义 建立适当的直角坐标系,用(x,y)表示曲线上任意一点M的坐标。 说 明 (1) 所研究的问题已给出坐标系,即可直接设点。 (2) 没有给出坐标系,首先要选取适当的坐标系。 2、现(限):由限制条写出适合条件P的点M这是求曲线方程的重要一步,应仔细分析件,列出几何等式。 的集合P={M|P(M)} 题意,使写出的条件简明正确。 3、“代”:代换 4、“化”:化简 5、证明 用坐标法表示条件常常用到一些公式。 P(M),列出方程f(x,y)=0 化方程f(x,y)=0为最简形式。 证明化简以后的方程的解为坐标的点都是曲线上的点。 要注意同解变形。 化简的过程若是方程的同解变形,可以不要证明,变形过程中产生不增根或失根,应在所得方程中删去或补上(即要注意方程变量的取值范围)。 这五个步骤(不包括证明)可浓缩为五字“口诀”:建设现(限)代化” (2)求曲线方程的常见方法: 直接法:
圆锥曲线典型例题
每天一有时间就写,吃饭的时候就边吃边看高考题,这种疯狂为一件事而努力的感觉真的很好!
今天先发辅导书开头部分的一小节,只是其中的一点点内容,不过其他部分也都是这种形式,其他的就不发了,主要是让大家看下这种形式好不好。
这本辅导书不是一个练习册,而是高中数学解题指导,我个人认为可以将其作为一个“字典”,里面涵盖了绝大部分常见题目的解决办法。
普通的辅导书对于题目只是枯燥套话性质的分析,但这本书的分析(也就是【黑夜语】以及答案解析中穿插的评论)却是我一个字一个字的心血,比如说答案是这么做的,那为什么想到这么做?别的辅导书没有讲,而我重点讲为什么这么做!
由于题量太大的话意义也不大,所以决定只选用10、11年高考题目,对于核心考点(比如圆锥曲线、数列等解答题),会选90%以上的题目,也就是说近两年基本所有该类高考题都会选中(除非某道题意义实在不大才不选),对于不是特别核心的知识,就会选40%-60%左右的题目。里面会著名是哪年哪地的考题,并且题号不变,这样大家可以根据其题号来大致明白此题的难度。(毕竟最后两道题往往是压轴题,前面的题难度会小一点。)
我有自信,如果能将这本书反复看个七八遍,对于里面的每一种情况都熟练到信手拈来的地步,对于里面的【黑夜
圆锥曲线典型例题讲解
9.1 椭 圆
典例精析
题型一 求椭圆的标准方程
45
【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和
325
,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 3
x23y23x2y2
【解析】故所求方程为+=1或+=1.
510105
【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m>0,n>0且m≠n);(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.
【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:
x2y2
据此,可推断椭圆C1的方程为 . +=1.
126题型二 椭圆的几何性质的运用
【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°. (1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关. 1
【解析】(1)e的取
圆锥曲线的定比分点
一、圆锥曲线的中点弦问题:
遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以
为中点的弦所在直线的斜率k=-;在双曲线中,以为
中点的弦所在直线的斜率k=;在抛物线中,以为中点的
弦所在直线的斜率k=
。比如:
①如果椭圆是 (答:
弦被点A(4,2)平分,那么这条弦所在的直线方程
);
②已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中
点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:
);
③试确定m的取值范围,使得椭圆上有不同的两点关于直线对
称(答:
);
特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、
!
对称问题时,务必别忘了检验
二 圆锥曲线的几何性质:你了解下列结论吗?
(1)双曲线
的渐近线方程为
;
(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为
为参数,≠0)。
如与双曲线有共同的渐近线,且过点的双曲线方程为_______(答:
)
(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为
;
(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相
应准线的距离)为,抛物线的通径为,焦准距为;
(5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛
第4讲圆锥曲线的定点与定值问题
第四讲 圆锥曲线中的定点与定值问题 1.如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的y交点为R. D(1)求动点R的轨迹E的方程; H(2)过曲线E的右焦点作直线l 交曲线E于M、N两点,交yC轴与点P,记PM??1MF,PN??2NF.求证:λ1+ λ2是定值. (设点法)
2. 已知A、B分别是直线y?P是AB的中点.
(1)求动点P的轨迹C的方程;
(2)过点Q(1,0)作直线l(与x轴不垂直)与轨迹C交于M、N两点,与y轴交于点R.若
RAOBx33x和y?? x上的两个动点,线段AB的长为23,33RM??MQ,RN??NQ,证明:???为定值.(设直线方程法)
1
x2y2??1的左、右顶点为A、B,3. 在平面直角坐标系xoy中,如图,已知椭圆95右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1?0,y2?0.
(1)设动点P满足PF2?PB2?4,求点P的轨迹; (2)设x1?2,x2?13,求点T的坐标; (3)设t
高考圆锥曲线中及定点与定值问题(题型总结超全)
..
专题08 解锁圆锥曲线中的定点与定值问题
一、解答题
1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆离心率为
;圆
的左右焦点分别为
两点.
,
过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于
(Ⅰ)求椭圆的标准方程;
(Ⅱ)证明:在轴上存在定点,使得【答案】(1)
(2)
为定值;并求出该定点的坐标.
【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得
。设x轴上的定点为,可得
,由定值可得需满足
,解得可得定点坐标。
解得。
.
∴椭圆的标准方程为(Ⅱ)证明:
由题意设直线的方程为由设
,
消去y整理得
,
,
,
..
要使其为定值,需满足解得
.
.
,
故定点的坐标为
点睛:解析几何中定点问题的常见解法
(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.
2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k的直线l经过点??1,0?与抛物
圆锥曲线专解析
名思教育圆锥曲线专题训练
一.解答题(共30小题)
1.在平面直角坐标系中,已知动点M(x,y),点A(0,1),B(0,﹣1),D(1,0),点N与点M关于直线y=x对称,且(1)求动点M所在曲线C的轨迹方程; (2)设直线l与曲线C交于G、H两点,且|GH|=
,求直线l的方程;
.直线l是过点D的任意一条直线.
(3)若直线l与曲线C交于G、H两点,与线段AB交于点P(点P不同于点O、A、B),直线GB与直线HA交于点Q,求证:
是定值.
,F是右焦点,A是右顶点,
2.如图,已知椭圆C的中心在原点,焦点在x轴上,离心率e=B是椭圆上一点,BF⊥x轴,|BF|=(1)求椭圆C的方程;
.
(2)设直线l:x=ty+λ是椭圆C的一条切线,点M(﹣,y1),点N(,y2)是切线l上两个点,证明:当t、λ变化时,以 M N为直径的圆过x轴上的定点,并求出定点坐标.
3.已知椭圆C1:x+4y=1的左、右焦点分别为F1、F2,点 P是C1上任意一点,O是坐标原点,
=
+
,设点Q的轨迹为C2.
2
2
(1)求点Q的轨迹C2的方程; (2)若点 T满足:
=
+2
+
,其中 M,N是C2上的点,且直线 O M,O N的斜率之
积等于﹣,是否存在两定点 A,B,
高考圆锥曲线中及定点与定值问题(题型总结超全)
..
专题08 解锁圆锥曲线中的定点与定值问题
一、解答题
1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆离心率为
;圆
的左右焦点分别为
两点.
,
过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于
(Ⅰ)求椭圆的标准方程;
(Ⅱ)证明:在轴上存在定点,使得【答案】(1)
(2)
为定值;并求出该定点的坐标.
【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得
。设x轴上的定点为,可得
,由定值可得需满足
,解得可得定点坐标。
解得。
.
∴椭圆的标准方程为(Ⅱ)证明:
由题意设直线的方程为由设
,
消去y整理得
,
,
,
..
要使其为定值,需满足解得
.
.
,
故定点的坐标为
点睛:解析几何中定点问题的常见解法
(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.
2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k的直线l经过点??1,0?与抛物
圆锥曲线轨迹方程经典例题
轨迹方程经典例题
一、轨迹为圆的例题:
1、 必修2课本P124B组2:长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的中点M的轨迹方程:
必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为
1,求点M的轨迹方程;(一般地:必修2课2本P144B组2:已知点M(x,y)与两个定点M1,M2的距离之比为一个常数m;讨论点M(x,y)的轨迹方程(分m=1,与m?1进行讨论)
2、 必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆
BMA(x?1)2?y2?1上运动,求AB的中点M的轨迹。
(2013新课标2卷文20)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23。 (1)求圆心的P的轨迹方程;
(2)若P点到直线y?x的距离为
2,求圆P的方程。 2
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR