非齐次线性方程组解的系数
“非齐次线性方程组解的系数”相关的资料有哪些?“非齐次线性方程组解的系数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“非齐次线性方程组解的系数”相关范文大全或资料大全,欢迎大家分享。
常系数线性方程组基解矩阵的计算
常系数线性方程组基解矩阵的计算
董治军
(巢湖学院 数学系,安徽 巢湖 238000)
摘 要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过 方法求出基解矩阵,这时可利用矩阵指数expAt,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数
Calculation of Basic solution Matrix of Linear Homogeneous System with Constant
Coefficients
Zhijun Dong
(Department of Mathematics, Chaohu College Anhui, Chaohu)
Abstract: Differential equations application in engineering technology is very extensive
解线性方程组的克拉默法则
第一章 解线性方程组的克拉默(Gramer)法则
解方程是数学中一个基本问题,特别是在中学代数中,解方程占有重要地位,因此这个问题是读者所熟悉的,譬如说,如果我们知道了一段导线的电阻r,它的两端电位差v,那么通过这段导线的电流强度i,就可以由关系式 ir?v
求出来,这就是通常所谓一元一次方程的问题,在中学代数中,我们解过一元,二元,三元以致四元一次方程组,这一章和下一章主要就是讨论一般的多元一次方程组,即线性方程组,这一章是引进行列式来解线性方程组,而下一章则在更一般的情况下来讨论解线性方程组的问题。
线性方程组的理论在数学中是基本的也是重要的内容。 对于二元线性方程组
?a?11x?1a12x?2b?a21x?1a2x?b
222当a11a22?a12a21?0时,此方程组有唯一解,即 x1a22?a12b2a11b2?a21b1?ba11a2?2a1a x2?221a11a2?2a1a 1221我们称a11a22?a12a21为二级行列式,用符号表示为
a11a22?a12aa1221?a11a
21a22于是上述解可以用二级行列式叙述为:
解线性方程组的几种迭代算法
解线性方程组的几种迭代算法
内容摘要:
本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题.
关键词:
线性方程组 迭代法 算法 收敛速度
Several kinds of solving linear equations
iterative algorithm
Abstract:
In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the alg
解线性方程组的几种迭代算法
解线性方程组的几种迭代算法
内容摘要:
本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题.
关键词:
线性方程组 迭代法 算法 收敛速度
Several kinds of solving linear equations
iterative algorithm
Abstract:
In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the alg
线性方程组的应用
线性方程组在现实中的应用
线性方程组在现实生活中的应用非常广泛的,不仅可以广泛地应用于工程学,计算机科学,物理学,数学,经济学,统计学,力学,信号与信号处理,通信,航空等学科和领域,同时也应用于理工类的后继课程,如电路、理论力学、计算机图形学、信号与系统、数字信号处理、系统动力学、自动控制原理等课程。 为了更好的运用这种理论,必须在解题过程中有意识地联系各种理论的运用条件,并根据相应的实际问题,通过适当变换所知,学会选择最有效的方法来进行解题,通过熟练地运用理论知识来解决数学得问题.
一、 线性方程组的表示
1.按照线性方程组的形式表示有三种 1)一般形式的表示
?a11x1?a12x2?...?a1nxn?b1??a21x1?a22x2?...?a2nxn?b2?...??ax?ax?...?ax?bn22nnnn?n11
2)向量形式:
x1?1?x2?2?...?xn?n??
3)矩阵形式的表示 :
AX??,A???1,?2,...,?n?X??x1,x2,...,xn?T
?0特别地,当?AX???0时,AX??称为齐次线性方程组,而当?时,
称为非齐次线性方程组
2.按照次数分类又可分为两类 1)齐次线性方程组
数值分析上机实验——解线性方程组
实 验 报 告
课程名称 数值分析 解线性方程组 上机 20111131 张振 理学楼407 预习部分 实验过程 表现 实验学时 学号 指导教师 实验时间 实验报告 部分 日期 4 2011113130 沈艳 2013.12.9 总成绩 实验项目名称 实验类型 班级 姓名 实验室名称 实验成绩 教师签字
哈尔滨工程大学教务处 制
实验四 解线性方程组
一.解线性方程组的基本思想 1.直接三角分解法:
将系数矩阵A转变成等价两个矩阵L和U的乘积 ,其中L和U分别是下三角和上三角矩阵。当A的所有顺序主子式都不为0时,矩阵A可以分解为A=LU,且分解唯一。其中L是单位下三角矩阵,U是上三角矩阵。 2.平方根法:
如果矩阵A为n阶对称正定矩阵,则存在一个对角元素为正数的下三角实矩阵L,使得:A=LL^T。当限定L的对角元素为正时,这种分解是唯一的,称为平方根法(Cholesky)分解。 3.追赶法:
设系数矩阵为三对角矩阵
?b1??a2?0A?????0??0?c1b2a3?000?c2?b3??00?000?0000?an?an?1bn?10??0?0?? ??cn?1??bn??则方程组Ax=f称为三对角方程组
线性代数 线性方程组
第四章 线性方程组
1. 设A 为n 阶方阵,若2)(-=n A R ,则0=AX 的基础解系所含向量的个数是( )。
)(A 0个(即不存在) )(B 1个 )(C 2个 )(D n 个
2.如果n 元非齐次线性方程组b AX =的系数矩阵A 的秩小于n ,则( )。
)(A 方程组有无穷多个解 )(B 方程组有惟一解
)(C 方程组无解 )(D 不能断定解的情况
3.设33)(?=ij a A 满足条件:(1)ij ij A a =(3,2,1,=j i ),其中ij A 是元素ij
a 的代数余子式;(2) 133-=a ;(3) ||1A =,则方程组
b AX =,
T b )1,0,0(=的解是( )。
)(A T )2,5,3( )(B T )3,2,1( )(C T )1,0,0(- )(D T )1,0,1(-
4.设A 为n 阶奇异方阵,A 中有一元素ij a 的代数余子式0≠ij A ,则齐次线性方程组0=AX 的基础解系所含向量个数为( )。
)(A i 个 )(B j 个 )(C 1个 )(D n 个
线性方程组解的情况及其判别准则
线性方程组解的情况及其判别准则
摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。
关键字:线性方程组;解空间;基础解系;矩阵的秩
Abstract: In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra. This article has researched the development of system of linear equations
线性方程组解法的探究
线性方程组解法的探究
摘 要线性方程组源自于生活中一些未知元素的一系列特定的关系而转化成的
一组数据关系。对其进行求解可以解决一些方案的设计问题,例如给以新品的开发的多种原料的成分设计提供多种不同的配方。本文将以多种方法对线性方程组求解,并讲诉线性方程组的类别。
关键词
齐次线性方程组 非齐次线性方程组 克拉默(Cramer)法则
Gauss消去法 广义逆矩阵 减号逆矩阵 增广矩阵 矩阵的初等行变换 矩阵的秩
引言
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。高斯消元法可以用在电脑中来解决数千条等式及未知数。不过,如果有过百万条等式时,这个算法会十分费时。一些极大的方程组通常会用迭代法来解决。亦有一些方法特地用来解决一些有特别排列的系数的方程组。广义逆的思想可追
MATLAB实验一 解线性方程组的直接法
实 验 报 告 课程名称 数值分析 实验项目 解线性方程组的直接法 专业班级 姓 名 学 号 指导教师 成 绩 日 期 月 日 一. 实验目的 1、掌握程序的录入和matlab的使用和操作; 2、了解影响线性方程组解的精度的因素——方法与问题的性态。 3、学会Matlab提供的“\\”的求解线性方程组。 二. 实验要求 1、按照题目要求完成实验内容; 2、写出相应的Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三. 实验步骤 1、用LU分解及列主元高斯消去法解线性方程组 ?7?10???32.099999a)?5?1??2