求解数学模型的方法
“求解数学模型的方法”相关的资料有哪些?“求解数学模型的方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“求解数学模型的方法”相关范文大全或资料大全,欢迎大家分享。
数学模型建立与求解
数学模型建立与求解
一、问题的提出:
某家公司专门经营商品的批发业务,公司有库存5000单位的仓库,一月一日,公司有库存1000单位,并有资金30000元,估计上半年的商品价格如下表所示:
一月 二月 三月 四月 五月 六月 进货价(元) 2.80 2.95 2.90 2.75 2.85 3.00 出货价(元) 3.10 3.15 3.00 2.90 3.10 3.05 如果买进的商品当月到货,但需要到下月才能卖出,且规定货到付款,公司希望这半年末的库存为1500单位。问应采取什么样的买进策略才能使这半年的获利最大? 二、模型建立:
①确定决策变量:xi为每月买进的商品,yi为每月卖出的商品。
②确定约束条件:因为买进的商品当月到货,但需要下月才能卖出,而每月卖出的应小于每月的买进量,故有:
y1?1000; y2?1000?y1?x1;
y3?1000?y1?x1?y2?x2; y4?1000?y1?x1?y2?x2?y3?x3;
y5?1000?y1?x1?y2?x2?y3?x3?y4?x4;
数学模型答案
长方形椅子能否在不平的地面上放稳吗?
【问题提出】
日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地.试从数学的角度加以解释. 【模型假设】
为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设: (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.
(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.
(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的. 【建立模型】
在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.
首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.
数学模型结业课程设计求解钢管订购和运输问题
《数学模型》课程结业论文
题 目 院 系 专 业 学 号 学生姓名 任课教师
钢管订购与运输
理学院 信息与计算科学
单锋
沈阳航空航天大学
2013年4月
任务及要求
任 务 书
[要求]
1、将所给的问题翻译成汉语;
2、给论文起个题目(名字或标题) 3、根据任务来完成数学模型论文;
4、论文书写格式要求按给定要求书写;
5、态度要认真,要独立思考,独立完成任务;
6、论文上交时间:5月30日前(要求交纸质论文和电子文档)。 7、严禁抄袭行为,若发现抄袭,则成绩记为“不及格”。
[任务]
钢管订购和运输
要铺设一条A1?A2???A15的输送天然气的主管道, 如图一所示(见下页)。经筛选后可以生产这种主管道钢管的钢厂有S1,S2,?S7。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。
为方便计,1km主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂Si在指定期限内能生产该钢管的最大数量为si个单位,钢管出厂销价1单位钢管为pi万
数学模型结业课程设计求解钢管订购和运输问题
《数学模型》课程结业论文
题 目 院 系 专 业 学 号 学生姓名 任课教师
钢管订购与运输
理学院 信息与计算科学
单锋
沈阳航空航天大学
2013年4月
任务及要求
任 务 书
[要求]
1、将所给的问题翻译成汉语;
2、给论文起个题目(名字或标题) 3、根据任务来完成数学模型论文;
4、论文书写格式要求按给定要求书写;
5、态度要认真,要独立思考,独立完成任务;
6、论文上交时间:5月30日前(要求交纸质论文和电子文档)。 7、严禁抄袭行为,若发现抄袭,则成绩记为“不及格”。
[任务]
钢管订购和运输
要铺设一条A1?A2???A15的输送天然气的主管道, 如图一所示(见下页)。经筛选后可以生产这种主管道钢管的钢厂有S1,S2,?S7。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。
为方便计,1km主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂Si在指定期限内能生产该钢管的最大数量为si个单位,钢管出厂销价1单位钢管为pi万
经济数学模型
经 济 数 学 模 型 论 文
谢杜杜 06信管(1)班 2006429020149
我们知道:数学与经济学息息相关,可以说每一项经济学的研究、决策,都离不开数学的应用。特别是自从诺贝尔经济学奖创设以来,利用数学工具来分析经济问题得到的理论成果层出不穷,经济学中使用数学方法的趋势越来越明显。当代西方经济学认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行预测、决策和监控。在经济领域,数学的运用首要的问题是实用性和实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。因而,数学模型分析已成为现代经济学研究的基本趋向,经济数学模型在研究许多特定的经济问题时具有重要的不可替代的作用,在经济学日益计量化、定量分析的今天,数学模型方法显得愈来愈重要。 一、经济数学模型的基本内涵
数学模型是数学思想精华的具体体现,是对客观实际对象的数学表述,它是在一定的合理假设前提下,对实际问题进行抽象和简化,基于数学理论和方法
数学模型答案
长方形椅子能否在不平的地面上放稳吗?
【问题提出】
日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地.试从数学的角度加以解释. 【模型假设】
为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设: (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.
(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.
(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的. 【建立模型】
在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.
首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.
数学模型答案
长方形椅子能否在不平的地面上放稳吗?
【问题提出】
日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地.试从数学的角度加以解释. 【模型假设】
为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设: (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.
(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.
(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的. 【建立模型】
在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.
首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.
肾炎诊断的数学模型
肾炎诊断的数学模型
摘要
本文解决的是肾炎的诊断的问题。人们到医院就诊时,其是否患肾炎通常要化验人体内各种元素的含量来协助医生的诊断。为解决此问题,我们建立了距离判别的数学模型。
对于问题一:我们提出了欧式距离与马氏距离两种方法来判别就诊的是患者还是健康人。我们选取出表B.1中1-30号已确诊为肾炎病人的化验结果作为总体A, 31-60号已确诊为健康人的化验结果作为总体B。然后,我们根据表B.1的数据特征模拟出30组已确诊为肾炎病人的化验结果和30组已确诊为健康人的化验结果作为样品C,然后我们将样品C用欧式距离模型进行判别,得到的误判率为23.33%;用马氏距离模型判别,得到的误判率为13.3%。为此,我们选用马氏距离法。为了使误判率降低,我们对模型进行改进,引入误判因子,此时的误判率降为3.33%。
对于问题二:我们用改进了的马氏距离判别模型将判断表B.2的化验结果进行判别,得出如下结果: 61 患病 71 患病 81 正常 62 患病 72 患病 82 正常 63 正常 73 患病 83 患病 64 患病 74 正常 84 正常 65 患病 75 正常 85 患病 66 患病 76 患病 86 正常 67 正常 77 正常 87 正常 6
浅谈数学模型的构建
浅谈数学模型的构建
作者: 范茹芳
山东省济宁市兖州市兴隆庄镇水坑小学 邮编 272101
电话13675475400
新 的《数学课程标准》指出:义务教育阶段的数学课程不仅要考虑学生自身的特点,更要遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身 经历将数学实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步与发展。“数 学模型”这个概念首次在我国义务教育课程中出现,在新课标的学习和应用中,有部分教师不明白什么叫数学模型,更不清楚怎样建立数学模型,下面结合本人的教 学实际谈一些体会。 一、什么叫数学模型
所 谓数学模型是对于现实世界的某一事物系统,为了一个特定的目的,根据事物系统特有的内在规律,采用形式化的数学语言或符号,概括的或近似地表达出来的一种 数学结构。简单地说数学模型就是对实际问题的一种数学表述。一切数学概念、公式和算法系统、数学理论体系等都可以称为数学模型。如数学中的数与式、方程与 不等式、函数都是研究数量关系和变化规律的数学模型。 二、建立数学模型的基本步骤
小学的数学模型教学
魔方我的数学模型
数学模型M
一、基本概念
魔方的6个面分别记为:前--Front (F),后--Back(B),左--Left(L),右--Right (R),上--Up (U),下-- Down(D).分别记为:F=1;B=-1;L=-j;R=j;U=k;D=-k
魔方有26块,分类为: (1) 中心块 ----六个面的中心就叫中心块只有一个面。(2) 边块 ----和中心块相邻的有两个面。记为:上面前后左右用s=1+0+k;-s=-1+0+k;-t=0-j+k,t=0+j+k表示。下面前后左右用下面:m=1+0-k;-m=-1+0-k;-n=0-j-k;n=0+j-k表示。中间层按前左右为Z=1-j+0;H=1+j+0。后左右为Q=-1-j+0;P=-1+j+0 表示。(3) 角块 ----8个在角上有三个面。按顺时针把角块记为:前上右角7=1+k+j;.前上左角5=1-j+k;后上左角4=-1+k-j.;后上右角6=-1+j+k;前下右.角3=1+j-;前下左角1=1-k-j;后下左角0=-1-j-k;后下右角2=-1-k+j。这样我们给各个块以名称和坐标。
不管怎样旋转魔方,中心块的位置是不会变的。边块和角块都会移动,但边块不会移动到角块的位置,同样