微分方程求解公式

“微分方程求解公式”相关的资料有哪些?“微分方程求解公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微分方程求解公式”相关范文大全或资料大全,欢迎大家分享。

常微分方程的求解 实验六

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

《数学实验》报告

实验名称 常微分方程的求解 学 院 专业班级 姓 名 学 号

2013年5月

一、 【实验目的】

1. 学习在MATLAB中如何求解微分方程的方法;

2. 掌握基本的微分求解命令,学会结合学过的基础知识求解方程; 3. 熟练运用基本的解法即数值解法解微分方程; 4. 注意不同方法下求得微分方程的优缺点。

二、 【实验任务】

xsinxy?1. 求解微分方程为cosy。

''y2. 用数值方法求解下列微分方程,用不同颜色和线形将y和画在同一个

图形窗口里:

y?ty?y?1?2t初始时间:t0=0;终止时间:tf

三、 【实验程序】 1.

y=dsolve('Dy=x*sinx/cosy','x') 2.

定义的程序:

function xdot=exf(t,x)

xdot=[0 1;1 -t]*x+[0;1]*(1-2*t);

主程序:

2

'''

=?;初始条件:y|t?0?0.1 y

D6_1微分方程及其求解(4)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

发放

常系数非齐次线性微分方程一、

f (x) = e P (x) 型 m+P (x)sinωx]型 n

λx

二、 f (x) = eλ x[P(x)cosω x l

高等数学》 《高等数学》

土木103、104 、 土木

2010-2011学年第二学期 - 学年第二学期

发放

二阶常系数非齐次线性微分方程 :

y′′ + py′ +qy = f (x)y =Y+y*

(p,q为常数 为常数) 为常数

根据解的结构定理 , 其通解为齐次方程通解 非齐次方程特解

求特解的方法

— 待定系数法的待定形式, 的待定形式

根据 f (x) 的特殊形式 , 给出特解

代入原方程比较两端表达式以确定待定系数 .高等数学》 《高等数学》 土木103、104 、 土木 2010-2011学年第二学期 - 学年第二学期

发放

设非齐次方程(2)的右端 定理 4 设非齐次方程 的右端 f (x)是几个函

( 数之和, 数之和 如 y′′ + P(x)y′ +Q x)y = f1(x) + f2(x)分别是方程, 而 y 与 y 分别是方程* 1 * 2

y′′ + P(x)y′ +Q x)y = f1(x) ( y′′ + P(x)y′ +Q x)y = f2(x) (的特解, 就是原方程的特解.

微分方程讲义

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

课程安排:2学期,周学时 4 , 共 96 学时. 主要内容:定积分的计算 要求:听课 、复习 、 作业 本次课题(或教材章节题目):第七章 微分方程 第一讲 微分方程的基本概念 教学要求: 微分方程的基本概念以及微分方程阶的概念。 重 点:微分方程的基本概念,微分方程阶的概念 难 点: 微分方程的概念; 微分方程阶的概念 教学手段及教具:讲授为主 讲授内容及时间分配: 1 复习 15分钟 2 微分方程的问题举例 30分钟 3 微分方程概念以及阶数练 45分钟 课后 作业 参考 资料 定积分的概念与性质 一、复习导数和高阶导数的概念 二、微分方程问题举例及引出 函数是客观事物的内部联系在数量方面的反映?利用函数关系又可以对客观事物的规律性进行研究?因此如何寻找出所需要的函数关系?在实践中具有重要意义?在许多问题中?往往不能直接找出所需要的函数关系?但是根据问题所提供的情况?有时可以列出含有要找的函数及其导数的关系式?这样的关系就是所谓微分方程?微分方程建立以

第十章 常微分方程(组)求解

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第三篇 第十章 常微分方程(组)求解

Matlab常微分方程(组)求解 一、 求微分方程的解

(一) 相关函数(命令)及简介

1, dsolve('equ1','equ2',…):Matlab求微分方程的解析解。

equ1,equ2,…为方程(或条件)。写方程(或条件)时用Dy表示y关于自变量的一阶导数,用D2y表示y关于自变量的二阶导数,依次类推。

2, simplify(s):对表达式s使用maple的化简规则进行化简。 例如: syms x

simplify(sin(x)^2+cos(x)^2) ans=1

3,[r,how]=simple(s):由于Matlab提供了多种化简规则,simple命令就是对表达式s用各种规则进行化简,然后用r返回最简形式,how返回形成这种形式所用的规则。 例如: syms x

[r,how]=simple(cos(x)^2-sin(x)^2) r=cos(2*x) how=combine

4,[T,Y]=solver(odefun,tspan,y0),求微分方程的数值解。 (1)其中的solver为命令

ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb之一

12微分方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第十二章 微分方程

一、内容提要

(一)主要定义

【定义12.1】 微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程.未知函数是一元函数的叫做常微分方程; 未知函数是多元函数的叫做偏微分方程.

【定义12.2】 微分方程的阶 微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶.

一般形式为: Fx,y,y?,y??,?,y标准形式为:y?n??(n)??0.

??fx,y,y?,?,y?n?1?.

?【定义12.3】 微分方程的解 若将函数y???x?代入微分方程使其变成恒等式 即 F?x,??x?,???x????n???x????0,

或者 ??n??x????x?,?,??n?1??x?? f?x,?x,?????则称y???x?为该方程的解.

根据y?y?x?是显函数还是隐函数 ,分别称之为显示解与隐式解.若解中含有任意常数,当独立的任意常数的个数正好与方程的阶数相等时该解叫做通解(或一般解);不含有任意常数的解叫特解.

【定义12.4】 定解条件 用来确定通解中任意常数的条件称为定解条件,最常见的定解条件是初始条件.

【例1

微分方程作业

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

P10习题

1.用Euler法和改进的Euler法求u’=-5u (0≤t≤1),u(0)=1的数值解,步长h=0.1,0.05;并比较两个算法的精度。

解:function du=Euler_fun1(t,u) du=-5*u;clear;

h=0.1;tend=1;N=1/h;t(1)=0;u(1)=1; t=h.*(0:N); for n=1:N

u(n+1)=u(n)+h*Euler_fun1(t(n),u(n)); end

plot(t,u,'*');hold on for n=1:N

v(1)=u(n)+h*Euler_fun1(t(n),u(n)); for k=1:6

v(k+1)=u(n)+h/2*(Euler_fun1(t(n),u(n))+Euler_fun1(t(n+1),v(k))); end

u(n+1)=v(k+1); end

plot(t,u,'o');

sol=dsolve('Du=-5*u','u(0)=1'); u_real=eval(sol); plot(t,u_real,'r');

将上述 h 换为0.05得:

由图像知道:

显然改进的Euler法要比Euler法

裘布依微分方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

1.答:对于底坡i=0、 i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向变小。而根据渗流连续性原理,可知q=常量。

那么,由裘布依微分方程

q??Kh?H ?x

可知??H沿流向将变大,即水头线越来越弯曲,其形状H为一上凸的曲线。?x

由此,可知习题6-1图所示的水头线形状不正确,图中红色曲线为正确的水头线形状。

(a) (b)

习题6-1图

2.答:

(a)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向变小。而根据渗流连续性原理,可知q=常量。 那么,由裘布依微分方程

q??Kh?H ?x

可知?

?H沿流向将变大,即水头线越来越弯曲, 其形状为一上凸的曲线。?x

(a) (b)

习题6-2图

(b)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向不变。根据渗流连续性原理,可知q=常量。 那么,由裘布依微分方程

q??Kh?H ?x可知??H沿流向将不变,水头线H为一斜直线。?x

(c)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流

节微分方程模型

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第三节 微分方程模型

本节介绍确定性动态系统的微分方程建模。首先回顾物理领域的微分方程模型,然后介绍今非物理领域的微分方程模型。

一、徽分方程应用举例

人们对于微分方程的研究,早在十六七世纪微积分建立的时候就已经开始了,在17世纪和18世纪初得到了迅速的发展,成为研究自然现象的有力的工具。早期的研究与几何及力的研究关系密切。在17、18世纪,人们借助于微分方程,在力学、天文学、物理学等领域中,取得了重要的成就。

在一些应用问题中, 往往不能直接找出所需要的函数关系。 但是,可以根据问题所提供的线索,列出含有待定函数及其导数的关系式,称这样的关系式为微分方程模型。给出微分方程模型之后,对它进行研究,找出未知函数这一过程称为解微分方程。

下面给出的几个问题都是与时间t有关。对于一个依赖于时间t的量y的情况, 建立一个关于

,y与t的关系式, 它在任何时刻均成立。对这个方程积分, 便得到一个只含

的新方程。新方程中含有积分常数, 并且对于任何特定的t仍然成立。

。对于任何确

有y和t而不含

然后,利用问题中的一些特定信息,确定这些积分常数,于是,得函数定的t0,都可以算出

一般来说,求解一个应用问题时,可以按照如下步骤:

节微分方程模型

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第三节 微分方程模型

本节介绍确定性动态系统的微分方程建模。首先回顾物理领域的微分方程模型,然后介绍今非物理领域的微分方程模型。

一、徽分方程应用举例

人们对于微分方程的研究,早在十六七世纪微积分建立的时候就已经开始了,在17世纪和18世纪初得到了迅速的发展,成为研究自然现象的有力的工具。早期的研究与几何及力的研究关系密切。在17、18世纪,人们借助于微分方程,在力学、天文学、物理学等领域中,取得了重要的成就。

在一些应用问题中, 往往不能直接找出所需要的函数关系。 但是,可以根据问题所提供的线索,列出含有待定函数及其导数的关系式,称这样的关系式为微分方程模型。给出微分方程模型之后,对它进行研究,找出未知函数这一过程称为解微分方程。

下面给出的几个问题都是与时间t有关。对于一个依赖于时间t的量y的情况, 建立一个关于

,y与t的关系式, 它在任何时刻均成立。对这个方程积分, 便得到一个只含

的新方程。新方程中含有积分常数, 并且对于任何特定的t仍然成立。

。对于任何确

有y和t而不含

然后,利用问题中的一些特定信息,确定这些积分常数,于是,得函数定的t0,都可以算出

一般来说,求解一个应用问题时,可以按照如下步骤:

06 常微分方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

同济大学五版高等数学学习资料

第六章 常微分方程

一. 求解下列微分方程: 1. y' ex y

+ex=0.

解.

dydx=ex(e y 1), dye y 1

=exdx ln1 ey

=ex, 1 ey=cee xc

y=ln(1 ce

e x

).

2. dy dx

=(1 y2

)tanx

y(0)=2

解.

dy

1 y

2

=tanxdx

11+12lncy1 y= lncosx, y(0) = 2, 2lnc1+21 2=0, ln

1+y13+cos2x

3(1 y)=lncos2x, y=3 cos2x

二. 求解下列微分方程:

1. x x

1+ey 1 x

dx+ey

y dy=0 xey

x

1 解. dx y dy

=x

. 1+ey

x

y

=u,x=yu.(将y看成自变量) dxdy=u+ydudy

, 所以 u+ydudy=eu(u 1)

1+eu duueu euudy1+eu u= +eu

y=1+eu

c= 1

3

同济大学五版高等数学学习资料

u+eu 1dyd(u+eu)dy1+eu

ln= ln=ln= , = , ydu c yu+euyyu+eu

x

cc1u+euy