分类讨论法解不等式
“分类讨论法解不等式”相关的资料有哪些?“分类讨论法解不等式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“分类讨论法解不等式”相关范文大全或资料大全,欢迎大家分享。
分类讨论解不等式后的“综上所述”问题
分类讨论解不等式后的“综上所述”问题
在解不等式时,有好多题是用分类讨论方法来解题,好多学生在分类讨论后不知道怎么写“综上所述”。现总结如下:其中“a”代表参数,“x”代表自变量。
共有三句话:
讨论参数a,求参数a的范围,综上所述要求分类讨论结果的并集。
讨论参数a,求自变量x的范围,综上所述时讨论几种情况就写几种情况。 讨论自变量x,求自变量x的范围,综上所述要求分类讨论结果的并集。 举例如下:
讨论参数a,求参数a的范围,综上所述要求分类讨论结果的并集
若cos2θ+2msinθ-2m-2<0对θ∈R恒成立,求实数m的取值范围.
2
解:将原不等式变为sinθ-2msinθ+2m+1>0即 (sinθ-m)2-m2+2m+1>0恒成立,令sinθ=t,则 y=(t-m)2-m2+2m+1(|t|≤1)
∴只需求y=(t-m)2-m2+2m+1的最小值大于0恒成立. ①当m>1时,ymin=f(1)=2>0
②当m<-1时,ymin=f(-1)=4m+2>0 m>- (舍) ③当-1≤m≤1时,ymin=f(m)=-m2+2m+1>0 ∴1- <m≤1
综合①②③得 m>1- .
讨论参数a,求自变量x的范围,综上所述时讨论几种情况就写
9.1.1不等式及其解集
篇一:9.1.1不等式及其解集
年级:七 周次: 课时: 北屯初级中学 数学 课堂导学案 上课时间:年月 日 星期:
北屯初级中学 数学 课堂导学案(续)
篇二: 9.1.1不等式及其解集
2016年临夏市第二中学数学同课异构教学
9.1.1教学设计
不等式及其解集
学校:临夏市第二中学 教师:马龙
班级:七年级7班
时间:2016年05月24日
篇三:9.1.1不等式及其解集
七年级数学自主学习方案
班级 姓名:
9.1.1不等式及其解集 教案
9.1.1不等式及其解集 学习单
一、问题情境
1.一辆匀速行驶的汽车在11:20距离A 地50km ,要在12:00刚好驶到A 地,车速应为多少?
2.一辆匀速行驶的汽车在11:20距离A 地50km ,要在12:00之前驶过A 地,车速应满足什么条件?
二、建构活动
活动一
1.黑板上的式子有什么区别?
2.什么是不等式?
.
3.请根据定义编写不等式.
.
4.用不等式表示:
(1)a 是正数; (2)b 是非负数;
(3)x 与2的和小于或等于8; (4)a 的2
1最小是3; (5)b 与2的差不足10; (6)a 的平方不小于0.
活动二
的解吗?你能写出不等式503
2.1>x 叫做不等式的解.
2.不等式503
2>x 有多少个解? 不等式的解集: .
3.下列说法正确的是( )
A.x =3是2x +1>5的解集;
B.x =2是
《9.1.1 不等式及其解集》说课稿
《9.1.1 不等式及其解集》说课稿
曹寺学区曹寺中学
各位评委老师,大家好!今天我说课的题目是人教版数学七年级下册第九章第一节第一课时《不等式及其解集》,下面我将从说课标、教材分析、学法、教法、以及教学过程等几个方面对本课的设计进行说明。
一、课标
根据新课程标准所提出的“让学生从现实生活或具体情境中抽象出数学问题,通过解决问题帮助学生初步建立不等式的模型思想,提高学习数学的兴趣和应用意识。使学生获得必需的数学基础知识、基本技能、基本思想、基本活动经验。” 所以在本节课的设计中力求使“自主探索、动手实践、合作交流”成为学生学习的主要方式。下面向大家介绍一下我对本节课的理解与设计。 二:教材内容分析:
1、本节教材的编排意图(地位和作用)
本节课是学生在学习了一元一次方程和二元一次方程组的概念、解法及其应用后面临的一个新问题,不等式从某种程度上讲是等式的延伸,而在此之后,我们所要学的很多知识,比如,不等式的性质,一元一次不等式组,二次函数及方案设计等问题都要用到本节课的内容。因此,本节课的内容在整个中学数学起着承前启后的作用,通过本节课的学习可以使学生思维变
能力培优 不等式及不等式组
(一)不等式概念和性质错解例析
初学不等式,由于对概念及性质理解不够深刻,有些同学常出现一些错误,现举例分析,望能引以为戒
一、理解概念不透致错
例1、下列给出四个式子,
①x>2 ②a≠0 ③5<3 ④a≥b 其中是不等式的是( )
A、①④ B、①②④ C、①③④ D、①②③④
错解、选A
分析、不等式是指形式上用“<”、“>”、“≤”、“≥”、“≠”连接的式子,不受其是否成立的影响,5<3是不等式,只不过这个不等式不成立,另外a≠0也是不等式,因为“≠”也是不等号, 正解、选D
二、符号意义不清致错 例2、下列不等式
①2a>a ②a2+1>0 ③8≥6 ④x2≥0 一定成立的是( )
A、②④ B、② C、①②④ D、②③④
错解、选A
分析、导致本题错误的原因是对“≥”理解不正确,“≥”的意义是“>”或“=”,有选择功能,二者成立之一即可,事实上也只能二者取一,不等号两边的量不会既“>”又“=”,所以,对8≥6的理解应是“8大于6”,对x2≥0的理解应是,“当x=0时,x2=0;当x≠0时,x2>0” 正解、选D
例3、不等式x>-2的解集在数轴上表示正确的一项是( )
A B C
D
错解,选A
分析、对不等式的解集在数轴上的表示方法不清出错,在数轴上表示不等式的解集时,实心
初二数学备课组
口诀巧取不等式组的解集
口诀巧取不等式组的解集
在教学北师大版八年级下册一元一次不等式(组)的时候,学生在学习不等式组的解法和解集后,我发现学生在求解这个不等式组的解集时相当费时间,而且也容易出错。因为要求出这个不等组的解集,传统的解法是:先通过让学生先在数轴上把不等式组中各个不等式的解集表示出来,而且每一个解集都是要经过“三定”:定界点、定空实心,定方向,然后再找出各个解集的公共部分。传统的这个方法的优势是形象具体,不足这处在于,在数轴上表示各个不等式的解集非常耗时间、占空间,为了弥补这一不足,帮助学生节省时间,在学生做了大量的求解一元一次不等式组的解集后,我和学生对照各个解集一起总结出了一首不用画数轴也能快速取到不等式解集的口诀,简明易记,朗朗上口。
不等式组解集的口诀取法:同大取大,同小取小,大小小大取中,大大小小取空。
(前提:一个含有两个不等式的一元一次不等式组中的两个不等式最后均已经变成最简形式,即已经求出各自的解集)
四句的含义解释如下(用x表示未知数,且设a>b):
(1)同大取大
“同大取大”中的“同大”就是两个不等式同是大于号“>”,“取大”就是取两个数中较大者作为不等式组的解集
即如果原不等式组最后化为:
{x>a
{x>b
在a、b当中取大的那一个,即不等式组
第2讲不等式与不等式组
中考专题复习
第2讲 不等式与不等式组
一级训练
1.(2012年广东广州)已知a>b,c为任意实数,则下列不等式中总是成立的是( ) A.a+c<b+c B.a-c>b-c C.ac<bc D.ac>bc 2.(2012年四川攀枝花)下列说法中,错误的是( )
A.不等式x<2的正整数解中有一个 B.-2是不等式2x-1<1的一个解 C.不等式-3x>9的解集是x>-3 D.不等式x<10的整数解有无数个
3.(2012年贵州六盘水)已知不等式x-1≥0,此不等式的解集在数轴上表示为(
)
4.(2012年湖北荆州)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是(
)
2x-1≥x+1,
5.(2012年山东滨州)不等式 的解集是( )
x+8≤4x-1
A.x≥3 B.x≥2 C.2≤x≤3 D.空集
x-1≥0,
6.(2012年湖北咸宁)不等式组 的解集在数轴上表示为(
)
4-2x>0
7.(2012年湖南益阳)如图2-2-2,数轴上表示的是下列哪个不等式组的解集(
)
图2-2-2
x≥-5, x>-5, x<5, x<5, A. B. C. D. x>-3
不等式证明
第四章 微积分中值定理与证明 4.1 微分中值定理与证明
一 基本结论
1.零点定理:若f(x)在[a,b]连续,f(a)f(b)?0,则???(a,b),使得f(?)?0. 2.最值定理:若f(x)在[a,b]连续,则存在x1,x2使得f(x1)?m,f(x2)?M.其中
m,M分别是f(x)在[a,b]的最小值和最大值.
3.介值定理:设f(x)在[a,b]的最小值和最大值分别是m,M,对于?c?[m,M], 都存在???[a,b]使得f(?)?c.(或者:对于?c?(m,M),都存在???(a,b)使得
f(?)?c)
4.费玛定理:如果x0是极值点,且f(x)在x0可导, 则 f?(x0)?0.
5.罗尔定理:f(x)在[a,b]连续,在(a,b)可导,f(a)?f(b),则???(a,b)使得
f?(?)?0.
6.拉格朗日定理:f(x)在[a,b]连续,在(a,b)可导,,则???(a,b)使得
f(b)?f(a)?(b?a)f?(?).
) 7.柯西定理:f(x),g(x)在[a,b]连续,在(a,b)可导,且g?(x)?0,则???(a,b使得
f(b)?f(a)f?(?)?.
g(b)?g(a)g?(?)8.泰勒公
不等式知识
不等式知识
目录:
三道小题
(一)一些基础。。。
(二)不等式的一些直观解释。。。 (三)谈谈放缩法。。。 (四)杂谈 关于配方法。。。 (五)杂谈 差分代换。。。
(六)杂谈 谈谈切线法及其推广 (七)介绍几个重要的不等式①。。。 (八)介绍几个重要的不等式②。。。 (九)杂谈 再谈配方法。。。。
(十)关于函数实根分别和不等式解集问题。。。。。。。
(十一)谈谈齐次形式不等式的程序化处理①对称整理类。。。 (十二)谈谈齐次形式不等式的程序化处理②Schur拆分法。。。 (十三)细化赫尔德(H?lder)不等式&引入闵可夫斯基(Minkowski)不等式。。。。 (十四)幂平均函数及其他。。。。。。。 (十五)SOS定理。。。
(十六)凸函数理论及受控理论。。。
(十七)杂谈 克劳修斯(Clausius)不等式与热力学第二定律。。。。 (十八)关于机械化方法的历史。。。 (十九)多元函数极值的偏导方法。。。。 (二十)解析——几何与代数的桥梁 小测试 A(轮换不等式) 小测试 B(含参情况) 小测试 C(对称破缺)
出三道小题,作为你们的自我检测,如果做不上来,你你还需要多练习练习。如果可以,那我们继续看:
①对于实数 x , y
2007不等式
不错的不等式题目
2006
1、均值不等式的理解
1.如果正数a,b,c,d满足a b cd 4,那么( ) A.ab≤c d,且等号成立时a,b,c,d的取值唯一 B.ab≥c d,且等号成立时a,b,c,d的取值唯一 C.ab≤c d,且等号成立时a,b,c,d的取值不唯一 D.ab≥c d,且等号成立时a,b,c,d的取值不唯一 答案:A
2、均值不等式的应用
1.若x,y R+,且x 4y 1,则x y的最大值是 . 答案:
116
2.已知x 0,y 0,x,a,b,y成等差数列,x,c,d,y成等比数列,则最小值是( ) A.0 B.1
(a b)cd
2
的
C.2 D.4
3
是1 a和1 a的等比中项,则a 3b的最大值为( ) A.1
B.2
C.3
2aba 2b
5
D.4
的最大值为( )
4.若a是1 2b与1 2b的等比中项,则
15
B.
4
D.
2
答案:B
3、其他不等式性质
1.设a,b是非零实数,若a b,则下列不等式成立的是( ) A.a b B.ab答案:C
4、解复杂不等式
1.解不等式(3x 1 1)(sinx 2) 0.
解:因为对任意x R,sinx 2 0,所以原不等式等价于3