线性电阻电路的等效变换与分析
“线性电阻电路的等效变换与分析”相关的资料有哪些?“线性电阻电路的等效变换与分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性电阻电路的等效变换与分析”相关范文大全或资料大全,欢迎大家分享。
第2章 电阻电路的等效变换
福建工程学院国脉信息学院
第2章 电阻电路的等效变换
本章重点 2.1 2.2 2.3 2.4 2.5 2.6 2.7 引言 电路的等效变换 电阻的串联和并联 电阻的Y形连接和△ 电阻的 形连接和△形连接的等效变换 形连接和 电压源、 电压源、电流源的串联和并联 实际电源的两种模型及其等效变换 输入电阻
福建工程学院国脉信息学院
重点: 重点: 电路等效的概念; 1. 电路等效的概念; 2. 电阻的串、并联; 电阻的串、并联; 电阻的Y— 变换; 变换; 3. 电阻的 电压源和电流源的等效变换; 4. 电压源和电流源的等效变换;
福建工程学院国脉信息学院
2.1
电阻电路 分析方法
引言
仅由电源和线性电阻构成的电路 ①欧姆定律和基尔霍夫定律是 分析电阻电路的依据; 分析电阻电路的依据; ②等效变换的方法,也称化简的 等效变换的方法, 方法。 方法。
福建工程学院国脉信息学院
2.2 1.两端电路(网络) 1.两端电路(网络) 两端电路 电路的等效变换
任何一个复杂的电路, 向外引出两个端钮,且 任何一个复杂的电路, 向外引出两个端钮, 从一个端子流入的电流等于从另一端子流出的电流, 从一个端子流入的电流等于从另一端子流出的电流, 或一端口网络) 则称这一电路为二
第2章 电阻电路的等效变换
福建工程学院国脉信息学院
第2章 电阻电路的等效变换
本章重点 2.1 2.2 2.3 2.4 2.5 2.6 2.7 引言 电路的等效变换 电阻的串联和并联 电阻的Y形连接和△ 电阻的 形连接和△形连接的等效变换 形连接和 电压源、 电压源、电流源的串联和并联 实际电源的两种模型及其等效变换 输入电阻
福建工程学院国脉信息学院
重点: 重点: 电路等效的概念; 1. 电路等效的概念; 2. 电阻的串、并联; 电阻的串、并联; 电阻的Y— 变换; 变换; 3. 电阻的 电压源和电流源的等效变换; 4. 电压源和电流源的等效变换;
福建工程学院国脉信息学院
2.1
电阻电路 分析方法
引言
仅由电源和线性电阻构成的电路 ①欧姆定律和基尔霍夫定律是 分析电阻电路的依据; 分析电阻电路的依据; ②等效变换的方法,也称化简的 等效变换的方法, 方法。 方法。
福建工程学院国脉信息学院
2.2 1.两端电路(网络) 1.两端电路(网络) 两端电路 电路的等效变换
任何一个复杂的电路, 向外引出两个端钮,且 任何一个复杂的电路, 向外引出两个端钮, 从一个端子流入的电流等于从另一端子流出的电流, 从一个端子流入的电流等于从另一端子流出的电流, 或一端口网络) 则称这一电路为二
线性电阻电路分析
第二章 线性电阻电路分析
电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。
上一章介绍的2b法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。
1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。
§2-l 电阻单口网络
VCR相同
N1 N2
等效
单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络内部的情况时,称二端网络为单口网络,简称为单口(One-port)。
电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是u-i平面上的一条曲线)。等效单口网络:当两个单口网络的VCR关系完全相同时,称这两个单口是互相等效的。
单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单
第2章电阻电路的等效变换习题及答案
第2章 习题与解答
2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
2Ω
3Ω
(a) (b)
题2-1图 解:(a )14//(26//3)3ab R =++=Ω
(b )4//(6//36//3)2ab R =+=Ω
2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。
a b
8Ω
a b 8Ω (a) (b)
题2-2图
解:(a )3[(84)//6(15)]//108ab R =++++=Ω
(b )[(4//48)//104]//94 1.510ab R =++++=Ω
2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。
8Ω
a
b
(a) (b)
题2-3图
解:(a )开关打开时(84)//43ab R =+=Ω
开关闭合时4//42ab R ==Ω
(b )开关打开时(612)//(612)9ab R =++=Ω
开关闭合时6//126//128ab R =+=Ω
2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b
)所示电路的电压U 。
6Ω6Ω
(a) (b)
简单非线性电阻电路分析
第六章 简单非线性电阻电路分析
由电压源、电流源和电阻元件构成的电路,称为电阻电路。由独立电源和线性电阻构成的电阻电路,称为线性电阻电路,否则称为非线性电阻电路。分析非线性电阻电路的基本依据仍然是 KCL、KVL 和元件的VCR。非线性电阻电路的一般分析方法已超出本课程的范围。本书只讨论简单非线性电阻电路的分析,为学习电子电路打下基础。
§6-1 非线性电阻元件
电压电流特性曲线通过u-i平面坐标原点直线的二端电阻,称为线性电阻;否则称为非线性电阻。按照非线性电阻特性曲线的特点可以将它们进行分类。其电压是电流的单值函数的电阻,称为流控电阻,用u=f(i)表示;其电流是电压的单值函数的电阻,称为压控电阻,用i=g(u)表示。
图6-1
图(a)所示隧道二极管是压控电阻。 图(b)所示氖灯是流控电阻。
图(c)所示普通二极管既是压控电阻,又是流控电阻。 图(d)所示理想二极管既不是流控电阻,又不是压控电阻。
其特性曲线对称于原点的电阻,称为双向电阻;否则称为单向电阻。图(b)所示氖灯是双向电阻,图(a)、(c)、(d)所示隧道二极管、普通二极管和理想二极管都是单向电阻。单向性的电阻器件在使用时必须注意它的正负极性,不能任意交换使用。
理想二极管是
电阻的星形和三角形连接的等效变换
电阻的星形和三角形连接的等效变换
1、电阻的星形和三角形连接
三个电阻元件首尾相连接,连成一个封闭的三角形,三角形的三个顶点接到外部电路的三个节点,称为电阻元件的三角形连接简称△连接,如图2.7(a)所示。三个电阻元件的一端连接在一起,另一端分别连接到外部电路的三个节点,称为电阻元件的星形连接,简称Y形连接,如图2.7(b)所示。
三角形连接和星形连接都是通过三个节点与外部电路相连,它们之间的等效变换是要求它们的外部特性相同,也就是当它们的对应节点间有相同的电压U12、U23、U31时,从外电路流入对应节点的电流I1、I2、I3也必须分别相等,即Y-△变换的等效条件。
一种简单的推导等效变换方法是:在一个对应端钮悬空的同等条件下,分别计算出其余两端钮间的电阻,要求计算出的电阻相等。 悬空端钮3时,可得:R1?R2?悬空端钮2时,可得:R3?R1?悬空端钮1时,可得:R2?R3?R12(R23?R31)
R12?R23?R31R31(R12?R23)
R12?R23?R31R23(R12?R31)
R12?R23?R31R1?联立以上三式可得:R2?R12R31R12?R23?R31R12R23
蔡氏电路中非线性电阻的实验实现
陕西理工学院毕业论文(设计)
引言
蔡氏电路是美国贝克莱(Berkeley) 大学的蔡少棠教授(L eon. O. Chua) 设计的能产生混沌行为的最简单的自治电路, 该典型电路并不唯一, 最初发现的蔡氏电路实际上是同性质的某一族电路中的一个,这类电路被命名为“蔡氏振荡器”, 从而将这一普适性电路与最初定义的“蔡氏电路”加以区别氏电路在非线性系统及混沌研究中占有极为重要的地位[2]。在蔡氏电路的分析及实验研究中, 为电路建立一个精确的试验模型, 从而观察混沌现象并定量分析它, 这一点十分重要, 而其中, 非线性电阻的试验电路的实现这一环节是一个关键。实现蔡氏电路中非线性电阻的方法很多,本文采用的是运放加双二极管的电路来实现,这个实现电路是一个压控型电路,即其电流是输入电压的一个单值函数,从而测量出一定电压范围内每个输入电压对应的电流大小.
本文就蔡氏电路中非线性电阻,建立了等效的硬件电路模型,并对其电路进行了测试和PSPICE软件的仿真,得到了该电路的伏安数据。而且从数据上得出了该电路伏安特性性是非线性的,并对比了软件仿真数据和硬件测试数据,给出了详细的误差分析,从而为蔡氏混沌现象和其它理论研究奠定了理论基础。
电路实验报告-电压源和电流源的等效变换-20170221
《电路与模电》实验报告
实验题目:电压源与电流源的等效变换
姓名: 学号: 实验时间: 实验地点: 指导老师: 班级:
装订线
一、实验目的
1. 掌握电源外特性的测试方法。 2. 验证电压源与电流源等效变换的条件。 二、实验原理
1. 一个直流稳压电源在一定的电流范围内,其内阻很小。故在实用中,常将它视为一个理想的电压源,即认为输出电压不随负载电流而变,其伏安特性V=f(I)是一条平行于I轴的直线。
同样,一个实际的恒流源在实用中,在一定的电压范围内,可视为一个理想的电流源。
2. 一个实际的电压源(或电流源),其端电压(或输出电流)不可能不随负载而变,因它具有一定的内阻值。故在实验中,用一个小阻值的电阻与稳压源相串联来摸拟一个实际的电压源,用一个大电阻与恒流源并联来模拟实际的电流源。
3. 一个实际的电源,就其外部特性而言,即可以看成是一个电压源,又可以看成是一个电流源。若视为电压源,则可用一个理想的电压源ES与一个电阻R0相串联的组合来表
电路实验报告-电压源和电流源的等效变换-20170221
《电路与模电》实验报告
实验题目:电压源与电流源的等效变换
姓名: 学号: 实验时间: 实验地点: 指导老师: 班级:
装订线
一、实验目的
1. 掌握电源外特性的测试方法。 2. 验证电压源与电流源等效变换的条件。 二、实验原理
1. 一个直流稳压电源在一定的电流范围内,其内阻很小。故在实用中,常将它视为一个理想的电压源,即认为输出电压不随负载电流而变,其伏安特性V=f(I)是一条平行于I轴的直线。
同样,一个实际的恒流源在实用中,在一定的电压范围内,可视为一个理想的电流源。
2. 一个实际的电压源(或电流源),其端电压(或输出电流)不可能不随负载而变,因它具有一定的内阻值。故在实验中,用一个小阻值的电阻与稳压源相串联来摸拟一个实际的电压源,用一个大电阻与恒流源并联来模拟实际的电流源。
3. 一个实际的电源,就其外部特性而言,即可以看成是一个电压源,又可以看成是一个电流源。若视为电压源,则可用一个理想的电压源ES与一个电阻R0相串联的组合来表
纯电阻与非纯电阻电路
纯电阻电路与非纯电阻电路
纯电阻电路就是在通电的状态下,只发热的电路,即通电状态下电能全部转化为电路电阻的内能,不对外做功。纯电阻电路中只有电阻、电源、导线,电能不能转化为热能以外的能量形式。例如:电灯,电烙铁,熨斗,等等,他们只是发热。它们都是纯电阻电路。
非纯电阻电路像发动机,电风扇等,除了发热以外,还对外做功,所以这些是非纯电阻电路。非纯电阻电路中电能一部分转化为电阻的内能,一部分转化为其他形式的能,如发动机,电扇等,一部分电能就要转化为机械能。
①在纯电阻电路(如白炽灯、电炉、电饭锅、电烙铁、电热毯、电熨斗、转子被卡住的电动机等电路)中,电功等于电热,即W=Q=Pt=UIt=I2Rt=U2 t /R
②在非纯电阻电路(含有电动机、电风扇、电冰箱、电磁炉、电解槽、给蓄电池充电、日光 灯等)中消耗的电能除转化成内能外,还有一部分转化成机械能(如电动机)或化学能(如电解 槽),即:
电动机:W=E机械+Q (UIt=E机械+I2Rt) 电解槽:W=E化学+Q (UIt=E化学+I2Rt) 此时:W>Q (UIt>I2Rt)
在非纯电阻电路中,U2t/R既不能表示电功,也不能表示电热,因为欧姆定律不再成立. (2)电功