初三二次函数动点问题

“初三二次函数动点问题”相关的资料有哪些?“初三二次函数动点问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初三二次函数动点问题”相关范文大全或资料大全,欢迎大家分享。

二次函数动点问题(含答案)

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数的动态问题(动点)

1.如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形

MDNA的面积为S.若点A,点D同时以每秒1个单位

的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;

(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

[解] (1)点A(?40,),点B(?20,),点E(08,)关于原点的对称点分别为D(4,0),C(2,0),

F(0,?8).

设抛物线C2的解析式是

y?ax2?bx?c(a?0),

?16a?4b?c?0,?则?4a?2b?c?0, ?c??8.?,?a??1?解得?b?6,

?c??8.?所以所求抛物线的解析式是y??x?6x?8.

二次函数与圆综合动点问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数与圆综合动 点问题 1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标;

(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;

y

y=x+b

D M 4 C

3 2 1

A B

x ?1 O 1

2.如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA?没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm. (1)求x、y所满足的关系式,并写出x的取值范围. (2)当△MOP为等腰三角形时,求相应的x的值. B

M Q

O P A

3.如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积;

(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CP

教师版初三二次函数易错点及期末汇编

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

T 同步:二次函数易错点一、选择题 1、在下列函数关系式中, (1) y 2x ; (2) y x x ; (3) y 2( x 1) 3 ; (4) y 3x 3 ,2 2 2 2

二次函数有( A.1 个 【答案】D

) B.2 个 C.3 个 D.4 个

【解析】二次函数的一般式为 y ax bx c ( a 0 ) 个均为二次函数,故选 D. ,42

【易错点】本题考查二次函数的定义和一般式,属容易题,但学生对二次函数解析式的常见形式把握不够,还是出 现把(3)不当二次函数来处理.. 2、若 y (2 m) x A. 5 【答案】C 【解析】二次函数的“二次”体现为自变量的最高次数为 2 次,因此 m 3 =2,且 2- m 0 ,故选 C.2m 2 3

是二次函数,且开口向上,则 m 的值为( C. — 5 D.0

)

B. 5

【易错点】考查二次函数的定义,属容易题,学生容易得出 m 3 =2,但会忽略 2- m 0 ,说明对二次函数的“二2

次”定义理解不透彻. 3、把抛物线 y 3x 向上平移 2 个单位,向向右平移 3 个单位,所得的抛物线解析式是(

函数动点问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

题型:选择题 难度:中等 详细信息 如图①,在矩形ABCD中,点P从点B出发沿BC、CD、DA运动至点A停止,设P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②,则梯形ORMN的面积为( ) A.65 B.60 C.40 D.20 根据图②中y与x的变化关系得出梯形的高,以及梯形的上底和下底,进而求出面积即可. 【解析】 设P运动的路程为x,△ABP的面积为y, 当x=3时,y取到最大,当x=8时,y开始减小,则CD=5, 故AB=5,BC=3, 则S△ABC=×3×5=即R,M的纵坐标为:∵EO=3,则TN=3, ∴NO=11,RM=8-3=5, ∴梯形ORMN的面积为:(5+11)×故选:B. 题型:填空题 难度:中等 详细信息 =60. , , 已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙,若AB=6cm,试回答下列问题: (1)图甲中BC的长度是 . (2)图乙中A所表示的数是 . (3)图甲中的图形面积是 . (4)图乙中B所表示的数是 . 题型:解答题 难度:困难 详细信息

(精)二次函数动轴与动区间问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

第1页(共5页) 二次函数在闭区间上的最值

一、 知识要点:

二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.

设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--?? ???b a

ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:

(1)当[]

-∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-

?b a m n 2,时 若-

m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[]

m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

二、例题分析归类:

(一)、正向型

是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形

(精)二次函数动轴与动区间问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

第1页(共5页) 二次函数在闭区间上的最值

一、 知识要点:

二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.

设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--?? ???b a

ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:

(1)当[]

-∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-

?b a m n 2,时 若-

m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[]

m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

二、例题分析归类:

(一)、正向型

是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形

二次函数利润问题初三

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数利润问题

一. 售价或涨价

1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100?x)件,应如何定价才能使定价利润最大?最大利润是多少元?

2、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.

(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;

(2)若设销售利润为s,写出s与x的函数关系式;

(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?

3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。

(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

(2)每件衬衫降价多少元时,商场平均每天盈利最多?

4、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产

二次函数动点问题解答方法技巧(含例解答案)

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

函数解题思路方法总结:

⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

动点问题题型方法归纳总结

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、

相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点

5、(湖北十堰市

初三数学二次函数知识点总结

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

砺智培训学校 1 / 11

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,实数.

2. 二次函数y?ax2?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随0? ?0,0? ?0,y轴 x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.

2. y?ax2?c的性质: 上加下减。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随c? ?0,c? ?0,y轴 x的增大而减小;x?0时,y有最小值c. x?0时,y随x

初三数学二次函数知识点总结

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

砺智培训学校 1 / 11

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,实数.

2. 二次函数y?ax2?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随0? ?0,0? ?0,y轴 x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.

2. y?ax2?c的性质: 上加下减。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随c? ?0,c? ?0,y轴 x的增大而减小;x?0时,y有最小值c. x?0时,y随x