2022年新课标学案高中数学全册答案

“2022年新课标学案高中数学全册答案”相关的资料有哪些?“2022年新课标学案高中数学全册答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“2022年新课标学案高中数学全册答案”相关范文大全或资料大全,欢迎大家分享。

人教版高中数学必修一 全册导学案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1.1.1集合的含义

使用说明:

“自主学习”10分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。

“合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。 “巩固练习”10分钟,组长负责,组内点评。

“个人总结”5分钟,根据组内讨论情况,指出对规律,方法理解不到位的问题。 能力展示5分钟,教师作出总结性点评。

通过本节学习应达到如下目标:

(1)初步理解集合的含义,知道常用数集及其记法.,初步了解“ ∈”关系的意义.。.

(2)通过实例,初步体会元素与集合的”属于”关系,从观察分析集合的元素入手,正确地理解集合. (3)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.

(4)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).

(5)在学习运用集合语言的过程中,增强认识事物的能力,初步培养实事求是、扎实严谨的科学态度.

学习重点:

集合概念的形成。

学习难点:

理解集合的元素的确定性和互异性.

学习过程

(一)自主学习

阅读课本,完成下列问题 :

1、 例(3)到例(8)和例(1)(2)是否具有相同的特点,它们能否构成集合

人教版新课标高中数学必修四 全册教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修4教案 1 按住Ctrl 键单击鼠标打开教学视频动画全册播放

1.1.1 任意角

教学目标

(一) 知识与技能目标

理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

(二) 过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三) 情感与态度目标

1. 提高学生的推理能力; 2.培养学生应用意识.

教学重点

任意角概念的理解;区间角的集合的书写.

教学难点

终边相同角的集合的表示;区间角的集合的书写.

教学过程

一、引入:

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

二、新课:

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:

③角的分类:

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x 轴的非负

人教版新课标高中数学必修四 全册教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修4教案 1 按住Ctrl 键单击鼠标打开教学视频动画全册播放

1.1.1 任意角

教学目标

(一) 知识与技能目标

理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

(二) 过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三) 情感与态度目标

1. 提高学生的推理能力; 2.培养学生应用意识.

教学重点

任意角概念的理解;区间角的集合的书写.

教学难点

终边相同角的集合的表示;区间角的集合的书写.

教学过程

一、引入:

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

二、新课:

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:

③角的分类:

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x 轴的非负

人教版高中数学选修2-3学案 全册

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

§1.1 分类加法计数原理与分步乘法计数原理(1)※ 学习目标

1.通过实例,总结出分类加法计数原理、分步乘法计数原理; 2. 了解分类、分步的特征,合理分类、分步; 3. 体会计数的基本原则:不重复,不遗漏.

※课前预习

1、预习目标

准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。 2、预习内容

分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,……,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.

分步计数原理:完成一件事,需要分成n个 ,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有 N= 种不同的方法。 3、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

疑惑点 疑惑内容 预习自测

1 从高二(1)班的50名学生中挑选1名同学担任学校元旦晚会主持人,有多少种不同挑选结果?

2一次会议共3人参加,结束时,大家两两握手

人教版新课标高中数学必修4_全册教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修4教案

1 按住Ctrl 键单击鼠标打开教学视频动画全册播放

1.1.1 任意角

教学目标

(一) 知识与技能目标

理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

(二) 过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三) 情感与态度目标

1. 提高学生的推理能力; 2.培养学生应用意识.

教学重点

任意角概念的理解;区间角的集合的书写.

教学难点

终边相同角的集合的表示;区间角的集合的书写.

教学过程

一、引入:

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

二、新课:

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:

③角的分类:

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴

最新精品学案:新课标高中数学人教A版必修1全册导学案及答案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

精品文档

精品文档 §1.1.1集合的含义及其表示

[自学目标]

1.认识并理解集合的含义,知道常用数集及其记法;

2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;

3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.

[知识要点]

1. 集合和元素

(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;

(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ?.

2.集合中元素的特性:确定性;无序性;互异性.

3.集合的表示方法:列举法;描述法;Venn 图.

4.集合的分类:有限集;无限集;空集.

5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R .

[预习自测]

例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.

(1)小于5的自然数;

(2)某班所有高个子的同学;

(3)不等式217x +>的整数解;

(4)所有大于0的负数;

(5)平面直角坐标系内,第一、三象限的平分线上的所有点.

分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.

例2.已知集合{},,M a b c =中的三个元素

【精品】人教版高中数学必修2全册整套导学案及答案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1.1.1棱柱、棱锥、棱台的结构特征

一、学习目标:

1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。(2)会用语言概述棱柱、棱锥、棱台的结构特征。(3)会表示有关几何体以及柱、锥、台的分类。

2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。(2)观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象概括能力。

二、学习重点、难点:

学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。

学习难点:柱、锥、台的结构特征的概括。

三、使用说明及学法指导:

1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。

3、A类是自主探究,B类是合作交流。

四、知识链接:

平行四边形:

矩形:

正方体:

五、学习过程:

A问题1:什么是多面体、多面体的面、棱、顶点?

A问题2:什么是旋转体、旋转体的轴?

1

B问题3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?

C问题4;探究一下各种四棱柱之间有何关系?

C问题5:质疑答辩

高中数学必修二全册教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一课时柱、锥、台、球的结构特征

(一)教学目标

1.知识与技能

(1)通过实物操作,增强学生的直观感知.

(2)能根据几何结构特征对空间物体进行分类.

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.

(4)会表示有关于几何体以及柱、锥、台的分类.

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征.

(2)让学生观察、讨论、归纳、概括所学的知识.

3.情感、态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.

(2)培养学生的空间想象能力和抽象概括能力.

(二)教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.

难点:柱、锥、台、球的结构特征的概括.

(三)教学方法

通过提出问题,学生观察空间实物及模型,先独立思考空间几何体的结构特征,然后相互讨论、交流,最后得出完整结论.

.

围上研究过那些?

.有两个面互相平行;

形;

.

.棱柱底面的有几对?

解析:略一个几何体是不是棱柱?

.

.

棱锥的结构特征:

.

1.观察下面这个几何体

.能否将轴改为斜边?

备用例题

例1 下列命题中错误的是( )

A .圆柱的轴截面是过母线的截面中面积最大的一个

B

高中数学新课标解读

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

LOGO

高中数学新课标解读

我国数学课程改革分成两个阶段:义务教育阶段和 高中阶段。义务教育数学课程改革稍早一些,改革 相对比较深入,高中数学课程改革要晚一些,还有 部分省份尚未进入改革,不过按照课程改革计划, 这些省份都将很快进入课改。下面我们主要对高中 阶段课改情况作一简要介绍。 新课改在中国教育界是一场重大的改革,也是一个 很艰难的过程。高中新课标从2000年开始研究,经 过一大批数学家、一线数学教师、教育管理人员不 断修订和完善,2004年开始在部分地区实验; 2010年,高中新课改在全国范围内推开。Your site here

LOGO

二、普通高中数学课程标准结构1. 前言2. 课程目标3.内容标准

4. 实施建议

Your site here

LOGO

前言 一、明确了高中数学课程的性质 二、提出了高中数学课程的理念构建共同基础,提供发展平台 提供多样课程,适应个性选择 倡导积极主动、勇于探索的学习方式 注重提高学生的数学思维能力 发展学生的数学应用意识 与时俱进地认识“双基” 强调本质,注意适度形式化 体现数学的文化价值 注重信息技术与数学课程的整合 建立合理、科学的评价体系Your site here

三、介绍了高中数学课程设计思路

高中数学新课标解读

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

LOGO

高中数学新课标解读

我国数学课程改革分成两个阶段:义务教育阶段和 高中阶段。义务教育数学课程改革稍早一些,改革 相对比较深入,高中数学课程改革要晚一些,还有 部分省份尚未进入改革,不过按照课程改革计划, 这些省份都将很快进入课改。下面我们主要对高中 阶段课改情况作一简要介绍。 新课改在中国教育界是一场重大的改革,也是一个 很艰难的过程。高中新课标从2000年开始研究,经 过一大批数学家、一线数学教师、教育管理人员不 断修订和完善,2004年开始在部分地区实验; 2010年,高中新课改在全国范围内推开。Your site here

LOGO

二、普通高中数学课程标准结构1. 前言2. 课程目标3.内容标准

4. 实施建议

Your site here

LOGO

前言 一、明确了高中数学课程的性质 二、提出了高中数学课程的理念构建共同基础,提供发展平台 提供多样课程,适应个性选择 倡导积极主动、勇于探索的学习方式 注重提高学生的数学思维能力 发展学生的数学应用意识 与时俱进地认识“双基” 强调本质,注意适度形式化 体现数学的文化价值 注重信息技术与数学课程的整合 建立合理、科学的评价体系Your site here

三、介绍了高中数学课程设计思路