锂离子石墨负极材料的作用
“锂离子石墨负极材料的作用”相关的资料有哪些?“锂离子石墨负极材料的作用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“锂离子石墨负极材料的作用”相关范文大全或资料大全,欢迎大家分享。
基于石墨烯的锂离子电池负极材料研究进展
基于石墨烯的锂离子电池负极材料研究进展精品文档,超值下载
院系:材料科学系
专业:材料学 姓名:雷冰冰 学号:14210300023
基于石墨烯的锂离子电池负极材料研究进展
摘要:锂离子电池因其质量轻、能量密度大、安全的优点,广泛应用于便携式电子设备领域,逐步成为了应用最佳和最有发展前途的能源。为了进一步提高锂离子电池的能量密度、循环寿命,需要进一步开发新的负极材料。由于石墨烯具有优越的导电性、超高的比表面积和很好的机械强度等特点, 其在锂离子电池负极材料方面显示出潜在的应用前景[1]。本文综述了目前世界上对于基于石墨烯材料的锂离子电池负极材料的研究现状。并对现有研究存在的不足做出了评价和预测了未来的研究方向。
关键词:锂离子电池;负极材料;石墨烯
前言:相比其他可充二次电池,锂离子电池中具有高的比容量、相对低的自放电、长的循环寿命和小的环境污染等优点,被广泛应用于便携式电子设备中。近几年能源环境问题及世界各国发展电动车的需求,
锂离子蓄电池负极材料石墨的改性与性能研究
关于锂离子电池负极材料的文献
电源技术
研究与设计
!"#$%&%’()*$+,(-.(/%*0()*1%&
!"#$%&’()*+,-./0/123
!"#$
%&’
!"#$%&’()*+!""##$$$%%,
456-./0123456789:;<=.>?@&’(ABCDEFG()HIJ&’(KLMEFNOP
锂离子电池纳米负极材料的研究进展
论文资料
电池工业第 13 卷第 2 期Chinese B attery I ndustry2008 年 4 月锂离子电池纳米负极材料的研究进展饶睦敏, 黄启明, 李伟善( 华南师范大学 化学与环境学院, 广州 510006 )摘要: 纳米材料可望大幅度提离锂离子电池的比能量。综述了近年来锂离子电池纳米负极材料的研 究进展, 包括碳、 锡基纳米材料以及某些金属合金纳米材料; 介绍了各种纳米材料的储锂机理以 硅、 及作为锂离子电池负极材料的优缺点。 关键词: 锂离子电池; 负极材料; 纳米材料 中图分类号: TM912.9 文献标志码: A 文章编号: 1008- 7923(2008)02- 0132- 05Resear ch pr ogr ess of nanometer negative mater ials for Li- ion batter iesRAO Mu- min, HUANG Qi- ming, LI Wei- shan( School of Chemistry Environment, South China Normal University, Guangzhou, Guangdong 510006, China)Abstr
纳米结构氧化物锂离子电池负极材料研究
复旦大学
博士学位论文
纳米结构氧化物锂离子电池负极材料研究
姓名:姚煜
申请学位级别:博士
专业:物理化学
指导教师:余爱水
2012-04-06
摘要
锂离子电池由于有高能量密度、高输出电压、无记忆效应和无环境污染等优点,得到越来越多的应用。不仅仅可以应用于各种便携式电子设备,在作为电动汽车动力电源和太阳能、风能等新能源的储能设备方面都有很大应用前景。目前商业化的锂离子电池广泛使用的负极主要是石墨类材料。但石墨理论容量低且有安全性问题,因此高理论容量、安全性好的新型负极材料得到越来越多的关注。氧化物负极材料具有理论容量高、循环性能好、安全性能高等优点,是替代石墨作为锂离子电池负极的理想材料,但导电性差、不可逆容量大和充放电前后体积变化大等问题制约其得到实际应用。研究表明,通过纳米化、碳包覆和形貌控制等方法可以提高材料导电性,缓解充电时的体积膨胀,改善材料的电化学性能。本论文采用碳包覆、化学沉积和水热等方法制备了氧化物纳米材料,利用x.射线衍射(Ⅺm)、扫描电镜(SEM)和透射电镜(TEM)等技术分析材料的形貌和结构等物理特征,采用恒电流充放电、循环伏安和交流阻抗谱等技术测试材料的电化学性能,并探讨了材料的结构和形貌与电化学性能之间的关系。主要研究内容和结果
新型硅负极材料在锂离子电池中的应用研究 - 图文
新型硅负极材料在锂离子电池中的应用研究
吴孟涛
天津巴莫科技股份有限公司
当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。
1 实验:
硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成202
高容量硅-碳复合材料在锂离子电池负极中的研究
高容量硅/碳复合材料在锂离子电池负极中的研究
【摘要】锂离子电池正得到越来越广泛的应用,已成为21世纪极具发展潜力的新型化学电源。目前,锂离子电池广泛采用的石墨类碳负极材料的理论储锂容量较低(石墨为372mah/g),因此开发新型高性能负极材料已成为当前的研究热点。本文采用高比容量的硅为主要活性体,采用体积效应小、循环稳定性好的碳为载体,通过高温热解以及水热等方法制备了新型的硅/碳复合材料,并对其电化学性能进行了研究。复合材料电极电化学测试显示,循环30次其可逆容量仍保持在600mah/g以上。优异的电化学性能主要归因于纳米硅颗粒处于无定形碳基体中对其体积变化具有良好的缓冲作用及纳米硅周围的石墨类碳相对于导电性的改善。
【关键词】锂离子电池;负极材料;硅/碳复合材料;高温热解;水热
当今社会,信息、能源和新材料在全球范围内成为重要的发展方向和支柱产业。在社会不断进步的同时,能源和环境问题已成为可持续发展的关键。伴随着全球逐渐减少的不可再生能源和日益严峻的环境问题,新能源的开发和应用刻不容缓。化学电源具有能量转换效率高、能量密度高、无噪声污染、可随意组合,随意移动等特点[1-3]。随着电子和信息产业的快速发展,移动通讯、数字处理机、便携式计算机
高容量硅-碳复合材料在锂离子电池负极中的研究
高容量硅/碳复合材料在锂离子电池负极中的研究
【摘要】锂离子电池正得到越来越广泛的应用,已成为21世纪极具发展潜力的新型化学电源。目前,锂离子电池广泛采用的石墨类碳负极材料的理论储锂容量较低(石墨为372mah/g),因此开发新型高性能负极材料已成为当前的研究热点。本文采用高比容量的硅为主要活性体,采用体积效应小、循环稳定性好的碳为载体,通过高温热解以及水热等方法制备了新型的硅/碳复合材料,并对其电化学性能进行了研究。复合材料电极电化学测试显示,循环30次其可逆容量仍保持在600mah/g以上。优异的电化学性能主要归因于纳米硅颗粒处于无定形碳基体中对其体积变化具有良好的缓冲作用及纳米硅周围的石墨类碳相对于导电性的改善。
【关键词】锂离子电池;负极材料;硅/碳复合材料;高温热解;水热
当今社会,信息、能源和新材料在全球范围内成为重要的发展方向和支柱产业。在社会不断进步的同时,能源和环境问题已成为可持续发展的关键。伴随着全球逐渐减少的不可再生能源和日益严峻的环境问题,新能源的开发和应用刻不容缓。化学电源具有能量转换效率高、能量密度高、无噪声污染、可随意组合,随意移动等特点[1-3]。随着电子和信息产业的快速发展,移动通讯、数字处理机、便携式计算机
锂离子电池正极材料
锂离子电池正极材料
锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括正、负极材料、电解质、隔膜等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。2013年第九期《产业趋势》中,我们曾为读者展示过几种主要的锂离子电池负极材料,本期我们将对锂离子电池正极材料进行介绍。
衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:
? ? ? ? ? ? ?
正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压 锂离子能够在正极材料中大量、可逆地嵌入和脱嵌,以使电池有较高的比容量
在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化,以保证电池良好的循环性能
在锂离子的嵌入/脱嵌过程中,正极的氧化还原电位变化应尽可能小,使电池能够平稳地充放电
正极材料应有较高的电导率和锂离子扩散系数,便于电池快速充放电 正极材料不与电解质等发生附反应 价格便宜,对环境无污染
目前获得广泛应用的锂离子电池正极材料体系主要包括钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMn2O4/ LiMnO2)、锂镍锰钴氧三元材料(LiNixC
青山动力锂离子电池负极配料作业指导书
青山动力锂离子电池负极配料作业指导书
主题系统名称SYSTEM SUBJECT 负极浆料配作业指导书 作业流程图: 制去离子水 文件编号DOCUMENT NO: 2012002 文件级别 受控文件 制 所需辅料及工装夹具: 高速搅拌 粘度测试 加 SBR 中速搅拌 粘度测试 余料参合 真空粘度调控 1. 手套、口罩、防尘帽、电子秤 2.小铲子、硅胶片 3.料桶、不锈钢盆 4.测粒度仪、振动筛 5、异丙醇(或酒精) 开启循环水 制 胶 高速搅拌 搁 置 加 S-P 高速搅拌 加活性物质
一.目 的: 配料是把电池活性材料和辅料在溶剂中进行高度分散形成非牛顿型高度粘度流体。浆料的粘度为:2000~2300 mpa.s,使活性物质分散均匀,便于拉浆涂布,上浆量恒定。 二.设备: 适用于鸿运200L真空混料机。 三.材料: 去离子水、CMC、导电剂S-P、石墨粉、粘合剂SBR 四.范围: 适用于负极活性材料水系配料。 五.操作步骤: (一)准备: 1.0电子秤校验:用100g砝码对电子秤进行校验; 2.0称取标准:溶剂±20g、干料±5g; 3.0检查溶器: 3.1检查称取溶剂的桶
锂离子电池材料的研究及进展
锂离子电池材料的研究及进展
前言:锂离子电池作为最新一代蓄电池,具有比能量高、工作温度范围宽、存储寿命长、工作电压高且平稳、无记忆效应、环境友好等特点,已广泛应用于移动电话,笔记本电脑、小型摄像机等电子设备中。发展高能锂离子电池关键技术之一是其材料的研发。下面主要介绍锂离子电池的正极材料,负极材料,电解质的研究及进展。
理想的锂离子电池电极材料(即锂离子嵌基材料)
1、在整个电极过程中,G值的变化要小,以保证电极输出电位的平稳;对于正极材料,要求 |G|较大,以提供较高的电极电位。
2、充放电过程中结构稳定,可逆性好,保证电池的循环性能良好。
3、锂离子在电极材料中的扩散系数高,以确保电极过程的动力学因素,从而使电池适用于较高的充放电倍率,满足动力型电源的需要。
4、电极活性物质的电化当量小,并且可以可逆脱出的锂离子量要大,以保证电极材料具有较高的能量密度。
5、材料的振实密度大,以保证材料具有较高的体积比容量。 6、在电解液中的化学稳定性好,溶解度低。 7、具有较高的电子导电性。
8、材料合成容易。
9、资源丰富,价格低廉,对环境无污染。
锂离子电池正极材料
锂离子电池正极材料在改善电池容量方面起着非常重要的作用,在所