高中数学常用函数求导

“高中数学常用函数求导”相关的资料有哪些?“高中数学常用函数求导”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学常用函数求导”相关范文大全或资料大全,欢迎大家分享。

高中数学函数常用函数图形及其基本性质

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

《思跃理科》内部资料——总结人:liyong

常见函数性质汇总

f(x)=b

常数函数 f(x)=b (b∈R)

x 图象及其性质:函数f(x)的图象是平行于x轴或与x轴重合(垂直于y轴)的直线 O

一次函数 f(x)=kx+b (k≠0,b∈R) |k|越大,图象越陡;|k|越小,图象越平缓; y f(x)=kx+b

图象及其性质:直线型图象。b=0;k>0;k<0

定 义 域:R 值域:R 单调性:当k>0时, 当k<0时

x O 奇 偶 性:当b=0时,函数f(x)为奇函数;当b≠0时,函数f(x)没有奇偶性;

反 函 数:有反函数。K=±1、b=0的时候 周 期 性:无

补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系

2、与曲线函数的联合运用

反比例函数 f(x)=

y b k (k≠0,k值不相等永不相交;k越大,离坐标轴越远) x图象及其性质:永不相交,渐趋平行;当k>0时,函数f(x)的图象分别在第一、第三象

限;当k<0时,函数f(x)的图象分别在第二、第四象限; 双曲线型曲线,x轴与y轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:(??,0)?(0,??) 值 域:(??,0)?(0,??)

y f(x)=O k xx 单 调 性:当k> 0时;当k< 0时

奇 偶 性:奇函数 反 函 数:原函数本身

《高中数学常用公式总结》

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

《高中数学常用公式总结》 1、元素与集合的关系 2 、集合

的子集个数共有

个;真子集有 个.

个;

非空子集有个;非空的真子集有

3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式 : 坐标

时,设为此式)

(当已知抛物线与轴的交

时,设为此式)

。(当已知抛物线与直

(当已知抛物线的顶点

(3) 零点式: 点坐标为 (4)切线式: 线

相切且切点的横坐标为 时,

设为此式)

4、 真值表: 同真且真,同假或假

5 、常见结论的否定形式;

6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)

充要条件: (1) 要条件;

(2)

且q ≠> p,则P是q的充分不必要条件;

,则P是q的必要不充分条

则P是q的充分条件,反之,q是p的必

(3) p ≠> p ,且 件;

(4)p ≠> p ,且

则P是q的既不充分又不必要条件。

7、 函数单调性:

增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在 若对任意的 则就叫

减函数:(1)、文字描述是:y随x的增大而减小。

高中数学常用公式及常用结论

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

§01. 集合与简易逻辑

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?

高中数学常用结论集锦

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

第 1 页 共 10 页 1.德摩根公式 ();()U U U U U U C A

B C A C B C A B C A C B ==.

2U U A B A A B B A B C B C A =?=????U A C B ?=ΦU C A B R ?=

3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个

4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;

③零点式12()()()(0)f x a x x x x a =--≠.

三次函数的解析式的三种形式①一般式32

()(0)f x ax bx cx d a =+++≠

②零点式123()()()()(0)f x a x x x x x x a =---≠

5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?

[]1212()()0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --

()()0

高中数学常用公式及结论

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

高中数学

常用公式及结论 王新敞

高中数学常用公式及结论

1. 元素与集合的关系:x?A?x?CUA,x?CUA?x?A.??A?A?? 2.德摩根公式 :CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 3.包含关系:

A?B?A?B?A?A?B?B?CUB?CUA?A?CUB???CUA?B?R

4.元素个数关系:

card(A?B)?cardA?cardB?card(A?B) card(A?B?C)?cardA?cardB?cardC

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2?1个;非空子集有2?1个;非空的真子集有2?2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0);

(2)顶点式f(x)?a(x?h)2?k(a?0);(当已知抛物线的顶点坐标(h,k)时,设为此式) (3)零点式f(x)?a(x?x1)(x?x2)(a?0);(当已知抛物线与x轴的交点坐标为

nnnn(x1,0),(x2,0)时,

高中数学联赛常用定理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

常用定理

1、费马点 (I)基本概念

定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。 (1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

(II)证明

我们要如何证明费马点呢:

费马点证明图形

(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P

由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1

将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度

又∠BPA=120度,因此A、P、D三点在同一直线上,

又∠CPB=∠A1DB=120度,∠PDB=60度,∠P

高中数学联赛常用定理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

常用定理

1、费马点

(I)基本概念

定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

(II)证明

我们要如何证明费马点呢:

费马点证明图形

(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,

△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B

同理可得∠CBP=∠CA1P

由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度

同理,∠APB=120度,∠APC=120度

(2)PA+PB+PC=AA1

将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度

又∠BPA=120度,因此A、P、D三点在同一直线上,

又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC

高中数学函数压轴题(精制)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

高考数学函数压轴题:

1. 已知函数f(x)?134x?ax?b(a,b?R)在x?2处取得的极小值是?. 33(1)求f(x)的单调递增区间;

(2)若x?[?4,3]时,有f(x)?m?m?210恒成立,求实数m的取值范围. 3

2

2. 某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x – 3

10x(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)

(1) 利润函数P(x) 及边际利润函数MP(x);

(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?

(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?

3. 已知函数?(x)?5x2?5x?1(x?R),函数y?f(x)的图象与?(x)的图象关于点

1(0,)中心对称。 2(1)求函数y?f(x)的解析式;

(2)如果g1(x)?f(x),gn(x)?f[gn?1(x)](n?N,n?2),试求出使g

高中数学 - 常用公式及常用结论大全

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

新课标:(高中数学)

新课标:高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)1

高中数学常用公式及常用结论2

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系:只能用属于符号而集合之间的关系用包含符号

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

注意:若A?B,则A可能是空集 练习:

1、设集合A?{x|x?12?x?0},B?{x|x?a},若A?B??,则a的取值范围( C )

(A)a?2 (B)a??2 (C)a??1 (D) -1

2、已知不等式x2?ax?0的解集为集合A=?x0?x?1?,(1)则a?________(a?1) (2)设集合B=?yy?x?a?且A?B?B,则a的取值范围是 a?0

23、设集合A?{1,2},则满足A?B?A的集合B的个数是B

(A)1 (B)3 (C)4 (D)8

4.若集合A有n个元素,则它的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

【点评】本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想。

4、已知