九年级三角函数知识点
“九年级三角函数知识点”相关的资料有哪些?“九年级三角函数知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“九年级三角函数知识点”相关范文大全或资料大全,欢迎大家分享。
九年级《三角函数》知识点、经典例题(1)
九年级《三角函数》知识点、例题、中考真题
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2
22c b a =+
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
定 义
表达式
取值范围
关 系
正弦 斜边的对边A A ∠=sin c a
A =sin
1sin 0<
B A sin cos = 1cos sin 22=+A A
余弦
斜边的邻边A A ∠=cos c b
A =cos
1cos 0<
的邻边的对边A tan ∠∠=A A b a
A =tan
0tan >A (∠A 为锐角) B A cot tan = B A tan cot =
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4 0°、30°、45. 60 90 特殊角的三角函数值(重要)
三角函数
0° 30°
45°
60°
90° αsin
2
1
2
2 2
3
1 αcos 1 23 2
2
2
1
αtan 0 3
3
1 3
- αcot
- 3
1
3
3
0 5、正弦、余弦的增减性:
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性:
当0°
三角函数知识点总结
高一必修四:三角函数
一 任意角的概念与弧度制
(一)角的概念的推广
1、角概念的推广:
在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角。按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。射线旋转停止时对应的边叫角的终边。
2、特殊命名的角的定义:
(1)正角,负角,零角 :见上文。
(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角等
(3)轴线角:角的终边落在坐标轴上的角
终边在x 轴上的角的集合: {}Z k k ∈?=,180|οββ
终边在y 轴上的角的集合: {}Z k k ∈+?=,90180|οοββ
终边在坐标轴上的角的集合:{}Z k k ∈?=,90|οββ
(4)终边相同的角:与α终边相同的角2x k απ=+
(5)与α终边反向的角: (21)x k απ=++
终边在直线y =x 上的角的集合:{}Z k k ∈+?=,45180|οοββ
终边在直线x y -=上的角的集合:{}Z k k ∈-?=,45180|οοββ
(6)若
三角函数复习(知识点)
i. 三角函数
1. 角?的终边与角??2k?,k?Z的终边相同.
例题:.与?2002终边相同的最小正角是_______________。 2.弧度制与角度制的互化:1rad(弧度)?3. 弧长公式:半径为R的圆的圆心角
0180?度?57.3?.
??0???2??所对弧的长l???R.
4. 扇形面积公式:设R是圆的半径,l是弧长,??0???2??为圆心角,S是扇形的面积;则S?11l?R???R2. 222例题:.设扇形的周长为8cm,面积为4cm,则扇形的圆心角的弧度数是 。
6. 常用三角不等式:
?(1)若x?(0,),则sinx?2x?tanx;
?(2)若x?(0,),则1?sinx?cosx?22;
7. 三角函数的定义:设?为任意角,?的终边上任取一点P(x,y),则P点到
y 22r?x?y?0,则 原点的距离
?O? x
ysin??; cos??x; tan??y(x?0).
rrxcosx?sinx例题:.已知tanx?2,求的值。
cosx?sinx8. 三角函数在各个象限的符号判断:
例题:1.若cos???x=_____。
3,且?的终边过点P(x,2),则?是第_____象限角,29.同角
三角函数知识点复习总结
1.角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称
为始边,终止位置称为终边。
2.象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角
的终边在坐标轴上,就认为这个角不属于任何象限。
3.终边相同的角的表示:
(1)
终边与
终边相同(
的终边在终边所在射线上)
,注意:相等的角的终边一定相同,终边相同的角不一定相等。
如与角
的终边相同,且绝对值最小的角的度数是___,合___弧
度。(答:;
)
(2)终边与终边共线(的终边在终边所在直线上)
。
(3)终边与终边关于轴对称
。
(4)终边与终边关于轴对称
。
(5)终边与终边关于原点对称
。
(6)终边在轴上的角可表示为:;终边在轴上的角可表
示为:;终边在坐标轴上的角可表示为:
。
如的终边与的终边关于直线对称,则=____________。(答:
)
4.
与
的终边关系:由“两等分各象限、一二三四”确定。
是第二象限角,则
是第_____象限角(答:一、三)
5.弧
三角函数的应用知识点复习
双直角三角形的求解
三角函数的知识点复习应用 1.锐角三角函数的定义: ∠A的正弦函数(简称∠
A
的正弦):
sinA=a 的余弦函数(简称∠A的余弦):cosA=
A
∠A的正切函数(简称∠A的正切):tanA=
A的对边
=
斜边 A的邻边
=
斜边 A的对边
=
A的邻边
∠A的余切函数(简称∠A的余切):cotA=
同样用数学语言表示锐角B的四种三角函数为:
A的邻边
=
A的对边
2.
1. 坡角:坡面与水平面的夹角α
坡度(也叫坡比):坡面的铅直高度h与水平宽度l之比
h
常用i表示,即:i tan l
2. 视线与水平面的夹角中:
视线在水平面上方的叫仰角 视线在水平面下方的叫俯角
h
双直角三角形的求解
3.方位角:指北或指南的方向与目标线所成的锐角 OA表示北偏东25°,OB表示南偏
OC表示
4. 含双直角三角形的组合图形的演变
5.简单应用:
(1)(北京东城区2002):在坡度为1:2的山坡
上种树,要求株距(和相邻两树间的水平距离)是6米, 问斜坡上相邻两树间的坡面距离是 米
(2)右图表示甲、乙两个自动扶梯,哪一个扶梯比陡? 6
5
二:用三角函数求解含有双直角三角形的组合图形问题 (甲) (乙) 1.典型的组合图形中,含双直角三角形,需要多次利用锐角
三角函数的应用知识点复习
双直角三角形的求解
三角函数的知识点复习应用 1.锐角三角函数的定义: ∠A的正弦函数(简称∠
A
的正弦):
sinA=a 的余弦函数(简称∠A的余弦):cosA=
A
∠A的正切函数(简称∠A的正切):tanA=
A的对边
=
斜边 A的邻边
=
斜边 A的对边
=
A的邻边
∠A的余切函数(简称∠A的余切):cotA=
同样用数学语言表示锐角B的四种三角函数为:
A的邻边
=
A的对边
2.
1. 坡角:坡面与水平面的夹角α
坡度(也叫坡比):坡面的铅直高度h与水平宽度l之比
h
常用i表示,即:i tan l
2. 视线与水平面的夹角中:
视线在水平面上方的叫仰角 视线在水平面下方的叫俯角
h
双直角三角形的求解
3.方位角:指北或指南的方向与目标线所成的锐角 OA表示北偏东25°,OB表示南偏
OC表示
4. 含双直角三角形的组合图形的演变
5.简单应用:
(1)(北京东城区2002):在坡度为1:2的山坡
上种树,要求株距(和相邻两树间的水平距离)是6米, 问斜坡上相邻两树间的坡面距离是 米
(2)右图表示甲、乙两个自动扶梯,哪一个扶梯比陡? 6
5
二:用三角函数求解含有双直角三角形的组合图形问题 (甲) (乙) 1.典型的组合图形中,含双直角三角形,需要多次利用锐角
三角函数的应用知识点复习
双直角三角形的求解
三角函数的知识点复习应用 1.锐角三角函数的定义: ∠A的正弦函数(简称∠
A
的正弦):
sinA=a 的余弦函数(简称∠A的余弦):cosA=
A
∠A的正切函数(简称∠A的正切):tanA=
A的对边
=
斜边 A的邻边
=
斜边 A的对边
=
A的邻边
∠A的余切函数(简称∠A的余切):cotA=
同样用数学语言表示锐角B的四种三角函数为:
A的邻边
=
A的对边
2.
1. 坡角:坡面与水平面的夹角α
坡度(也叫坡比):坡面的铅直高度h与水平宽度l之比
h
常用i表示,即:i tan l
2. 视线与水平面的夹角中:
视线在水平面上方的叫仰角 视线在水平面下方的叫俯角
h
双直角三角形的求解
3.方位角:指北或指南的方向与目标线所成的锐角 OA表示北偏东25°,OB表示南偏
OC表示
4. 含双直角三角形的组合图形的演变
5.简单应用:
(1)(北京东城区2002):在坡度为1:2的山坡
上种树,要求株距(和相邻两树间的水平距离)是6米, 问斜坡上相邻两树间的坡面距离是 米
(2)右图表示甲、乙两个自动扶梯,哪一个扶梯比陡? 6
5
二:用三角函数求解含有双直角三角形的组合图形问题 (甲) (乙) 1.典型的组合图形中,含双直角三角形,需要多次利用锐角
三角函数任意角和弧度制知识点
第一章 三角函数 任意角和弧度制知识点
任意角 知识点一、任意角 B 终边 总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。
α 知识点二、直角坐标系中角的分类 始边 O 1、 象限角与轴线角 A β 2、 终边相同的角 与角α终边相同的角β集合为__________________
C 终边 轴线角的表示:
终边落在x轴非负半轴角的集合为_____________;终边落在x轴非正半轴角的集合为_______; 终边落在x轴角的集合为____________________。
终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______; 终边落在y轴角的集合为____________________。 终边落在坐标轴角的集合为__________________ 。
象限角的表示 第一象限的角的集合为_________________ 第二象限的角的集合为_____________。
第三象限的角的集合为_________________; 第四象限的角的集合为____________。
例题1、判断下列各角分别是第几象限角:670°, 480°, -150°,
锐角三角函数知识点考点总结
锐角三角函数知识点考点总
结
-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
2 1 锐角三角函数定义 锐角角A 的正弦(sin
),余弦(cos )和正切(tan )叫做角A 的锐角三角函数。
正弦(sin )等于对边比斜边;sinA=a/c
余弦(cos )等于邻边比斜边;cosA=b/c
正切(tan )等于对边比邻边;tanA=a/b
锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。
2 角度 30° 45° 60°
正弦(sin) 1/2 √2/2 √3/2
余弦(cos) √3/2 √2/2 1/2
正切(tan) √3/3 1 √3
(注 θ是锐角:0 3锐角三角函数值的符号及其变化规律 1)锐角三角函数值都是正值。 2)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小); 余弦值随着角度的增大(或减小)而减小(或增大); 正切值随着角度的增大(或减小)而增大(或减小); 4同角三角函数基本关系式 a a a tan cos sin ?= 5互为余角的三角函数间的关系 3 a a cos
锐角三角函数知识点总结大全
锐角三角函数知识点总结大全
1. 解直角三角形必备条件:(除直角外)至少知道两条边的长度或一条边的长度和一个角的度数。
2. 近似计算不能用勾股定理求边长,否则误差会很大。 3. 解直角三角形解题思路总结:(除直角外)
(1) 知一角求另一角题型:已知一个角的度数,用直角
三角形中两锐角互余,求出另一角的度数。
(2) 知两边求另一边题型:已知两边的边长,用勾股定
理求出第三边的长。
(3) 锐角三角函数:适用于“知角求边”或“知边求角”
的题型中。(用sin,cos,tan,cot求出)。
4. 仰角和俯角
(1) 仰角:视线在水平线上方,与水平线形成的夹角。 (2) 俯角:是现在水平线下方,与水平线形成的夹角。 5. 锐角三角函数的性质(a为锐角) (1) 正弦的性质:
① 取值范围:0<sina<1 ②增减性:a越大,sina越大 (2) 余弦的性质:
① 取值范围:0<cosa<1 ②增减性:a越大,cosa越小 联系:sina和cosa互为反函数 (3) 正切的性质:
① 取值范围:tana可取全体正数 ②a越大,tana越大
③当a无限接近90度时,tana无穷大。 (4)余切的性质
①取值范围:cota可取全体正数 ②当a无限接近0度