cnn卷积神经网络三大特点
“cnn卷积神经网络三大特点”相关的资料有哪些?“cnn卷积神经网络三大特点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“cnn卷积神经网络三大特点”相关范文大全或资料大全,欢迎大家分享。
卷积神经网络CNN代码解析
卷积神经网络CNN代码解析
deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是 Rasmus Berg Palm
代码下载:https://http://www.77cn.com.cn/rasmusbergpalm/DeepLearnToolbox
这里我们介绍deepLearnToolbox-master中的CNN部分。
DeepLearnToolbox-master中CNN内的 函数:
调用关系为:
该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。
网络结构为:
让我们来看看各个函数:
一、Test_example_CNN: .................................................................................................................................................
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
基于卷积神经网络的正则化方法
计算机研究与发展DOI:10.7544/issnl000
JournalofComputerResearchandDevelopment
1239.2014.20140266
1900,2014
51(9):1891
基于卷积神经网络的正则化方法
吕国豪
罗四维
黄雅平蒋欣兰
北京
100044)
(北京交通大学交通数据分析与挖掘北京市重点实验室(1vguohao@bjtu.edu.cn)
ANovelRegularization
Method
a
a
Based
on
ConvolutionNeuralNetwork
LnGuohao,LuoSiwei。HuangY耐
X.¨dam
诧g
,
(BeijingKey
Laboratory
ofTraffic
D以
嗜m,以≯|Ⅲn㈨盯d曙M
is
●Be
g
∞_宝
g
University,Beijing100044)
inverse
Abstract
Regularization
method
widely
usedin
solving
the
problem.An
accurate
regularizationmodel
playsthemost
importantpartinsolvingtheinverse
problem.Theenergy
constraints
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
基于卷积神经网络的深度学习算法与应用研究
1对深度学习的国内外研究现状值得一看;2讲了神经网络和卷积神经网络的基础知识;3深度学习在车标上的应用基于卷积神经网络的深度学习算法与应用研究摘要深度学习(DL,DeepLearning)是计算机科学机器学习(ML,MachineLearning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标一人工智能(AI,ArtificialIntelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。将深度学习与各种实际应用研究相结合也是一项很重要的工作。本文整理和总结了国内外关于深度学习的发展历程和最新的研究成果,对人工神经网络及经典的卷积神经网络所涉及到
基于卷积神经网络的人脸识别系统设计与实现
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。
神经网络心得
人工神经网络学习心得
时间如白马过隙,很快八周的人工神经网络学习即将结束,仿佛昨天才刚刚开始学习这门课程,在这段时间的学习中,我有起初对神经网络的不了解到现在的熟悉和掌握,这其中的变化,是我知识提高的过程。我在这个过程中有一些自己的体会和感想。
我是一名学习控制科学和工程的研究生,起初对于神经网络的认识很肤浅,由于我相应知识的欠缺,想要理解神经网络的结构会很不容易。在开始的几节课中,老师给我们讲了神经网络的发展史、结构和原理,当时感觉有压力、紧张。因为我感觉和生物的神经学差不多,一开始接触觉得它不是一门智能控制学,而是一门生物学,所以只能慢慢学习和理解,最终完成课程的学习。虽然相比于其他学过的课程,我对这门学科的了解稍微逊色点,但我还不是一个害怕困难的人,越是困难我越是会迎头前进的,不会倒下,去努力掌握这些知识。
接下来的几周,是老师的授课过程,说实话老师讲的论文我听的不太懂,讲的软件的应用也是一知半解……有种痛苦的感觉,好像什么也没学到,问了其他同学,他们也有同样的感觉,哦,原来都一样啊,没事,那就继续坚持吧……
过了这个彷徨期,该是呐喊的时候了,该写期末作业了,开始做题的时候还挺紧张,害怕题很难做,找了很多资料,照葫芦画瓢,硬着头皮写,写
bp神经网络算法
BP神经网络算法 三层BP神经网络如图:
传递函数g 目标输出向量
tk 输出层,输出向量
zk 权值为wjk 传递函数f yj 隐含层,隐含层输出向量
权值为wij 输入层,输入向量
x1x2x3 xn
设网络的输入模式为x?(x1,x2,...xn)T,隐含层有h个单元,隐含层的输出为
y?(y1,y2,...yh)T,输出层有m个单元,他们的输出为z?(z1,z2,...zm)T,目标输出为t?(t1,t2,...,tm)T设隐含层到输出层的传递函数为f,输出层的传递函数为g
于是:yj?f(?wxi?1niji??)?f(?wijxi):隐含层第j个神经元的输出;其中
i?0nw0j???,hx0?1
zk?g(?wjkyj):输出层第k个神经元的输出
j?01m2此时网络输出与目标输出的误差为???(tk?zk),显然,它是wij和wjk的函数。
2k?1下面的步骤就是想办法调整权值,使?减小。
由高等数学的知识知道:负梯度方向是函数值减小最快的方向
因此,可以设定一个步长?,每次沿负梯度方向调整?个单位,即每次权值的调整为:
?wpq?????,?在神经网络中称为学习速率 ?wpq可以证明:按这个方法调整,误差会逐渐减