尺规作图已知三边作三角形

“尺规作图已知三边作三角形”相关的资料有哪些?“尺规作图已知三边作三角形”相关的范文有哪些?怎么写?下面是小编为您精心整理的“尺规作图已知三边作三角形”相关范文大全或资料大全,欢迎大家分享。

用尺规作三角形

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

2.6.1用尺规作三角形

学习目标:

1.会在已知三边时作三角形;

2.已知底边和底边上的高时作等腰三角形; 3.会作一个角的角平分线.

课前小测

1.尺规作图是指用 (没有刻度)和 作出几何图形. 2.我们已经学会用尺规作哪些图形?请同学们动手试一试: 作已知线段AB的垂直平 分线 自主学习

1.已知三边作三角形

已知线段a、b、c,求作ΔABC,使AB=c,BC=a,AC=b.

作法:(1)作线段BC= ,

(2)以C点为圆心,以 为半径作弧,再以点B为圆心,以 为半径作弧,两弧相交于点A;

(3)连接AC,AB.ΔABC即为所求作的三角形.

2.如何做一个角的平分线?

如图,已知∠AOB,求作∠AOB的平分线 作法:

(思考:为何所作的射线就是已知角的平分线?根据是什么?)

拓展延伸

1.已知线段a,h,求作等腰ΔABC,使AB=AC,且BC=a,高AD=h.(请写出作法) 提示:可先在草稿纸上画出满足条件的等腰三角形,再思考怎

用尺规作三角形 习题精选(二)

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

用尺规作三角形 习题精选(二)

一、训练平台(每小题6分,共24分)

1.如图11-55所示,已知线段a,c。求作Rt△ABC,使∠C=90°,BC=a,AB=c。

2.如图11-56所示,已知两边a,b,求作等腰三角形ABC。

3.如图11-57所示,已知线段m,n,∠A。求作△ABC,使AB=m,AC=n,∠A=∠a。

4.如图11-58所示,已知线段b,m(m>b),求作Rt△ABC,使∠C=90°,AC=b,BC边上的中线AD=m。

能力升级

二、提高训练(每小题6分,共24分)

1.如图11-59所示,已知钝角三角形ABC,求作中线BE、角平分线AD、高CF。

2.如图11-60所示,已知△ABC。求作AC上一点D,使点D到∠B两边的距离相等。

3.如图11-61所示,已知△ABC中的∠A和∠B分别等于图中的??,??,求作∠MON,使∠MON=∠C。

4.如图11-62所示,已知△ABC。求作△ABC的三边中垂线。

三、探索发现(每小题7分,共42分)

1..如图11-63所示,已知线段c,求作Rt△ABC,使∠C=90°,AB=c,AC=BC。

2.如图11-64所示,已知线段b,求作Rt△ABC,使∠C=90°,AC=b,

三角形知识总结与尺规作图知识点

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

第一部分 三角形

考点一、三角形 1、三角形的概念

由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段

(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段

(2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接

三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 5、三角形的分类

三角形按边的关系分类如下: 不等边三角形

三角形 底

尺规作图-作三角形的外接圆内切圆--教学设计(王晓萍)

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

《尺规作图》

——作三角形的外接圆、内切圆

教 学 设 计

上饶县第七中学:王晓萍

电话:15979380864

《尺规作图》

——作三角形的外接圆、内切圆

【内容和内容解析】:

作三角形的外接圆和内切圆是五种基本尺规作图的综合运用。它是在学生已经掌握了线段的垂直平分线、角平分线、三角形的外接圆和内切圆知识之后对尺规作图能力的一个提升。此内容的教学重点是培养学生严谨的分析能力和严密的推理能力。整个教学中贯穿了转换、类比、归纳等数学思想方法,切实帮助学生规范数学语言能力以及提高了学生的审美观,更加强了学生对伟大数学家们的敬爱之情,体现数学在实际生活中的“真、善、美”。

通过这节内容的学习,学生对圆心的寻找和半径的求解会有个更清醒的认识,对五种基本作图更加熟悉,同时为后面四边形甚至多边形外接圆和内切圆的理解奠定坚实的基础。

本节课从淘宝引入尺规作图的定义,又从“破镜重圆”引发出问题1--- 作三角形的外接圆,再从如何使宝箱之门最大引出问题2---作三角形的内切圆。以宝箱和淘宝为线索,让学生发现问题--- 分析问题----解决问题,充分发挥学生的潜能,培养学生敏锐的数学眼光和综合的分析、概括能力,最大限度地挖掘了尺规作图的资

三角形的三边关系

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三岔小学四年级数学学科导学案

主备人:黄丽 审核人: 组名: 姓名: 时间:2014年 5月 日 课题 学 习 目 标 学 习 重、难点 三角形三边的关系 课型 综合解决课 教学具准备 导学案 1、通过摆一摆、算一算等实践活动,探索并能发现三角形任意两条边的和大于第三条边。 2、自己能够应用发现的结论,来判断指定长度的三条线段能否组成三角形。 1、理解掌握三角形三边的关系 2、通过实验操作,发现三角形三边之间的关系。 学 案 【知识回顾】 1.说说什么叫三角形以及三角形各部分的名称。 2、说说自行车架、篮球架等为什么要做成三角形的? 【问题探究】 问题:探究三角形三边关系(阅读课本第82页例3,独立完成以下问题。) (1)小明从家到学校有几条路可走? (2)小明从家到学校走哪条路最近?为什么? (3)用长是4cm、5cm、5cm、6cm、10cm的小棒摆三角形,(每边只能用一根小棒来表示) 组别 三 边 长(厘米) 能否围成 三 角 形 三

直角三角形三边的关系教案

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

14.1.1直角三角形三边关系——勾股定理(1)

一、教学目标:

1.体验勾股定理的探索过程,掌握勾股定理用它解决身边与实际生活相关问题。 2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。

3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。 二、教学重点、难点:

重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。 三、教学方法及学法指导:

采用合作探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,培养学生动手实践能力和合作交流的意识。 四、教具准备

多媒体课 三角形纸片 五、教学过程:

(一).自学导纲 1、创设情境,导入课题

师:同学们,在电网改造中,电力工人为了让如图示的电线杆更加稳固,可以采用什么方法?请大家帮他想想办法。

生1:埋的更深一些。 生2:斜拉一根钢丝……

师:大家真聪明,能想出这么多方法。如果采用了 生2的方案,你的依据的什么? 生:三角形的稳定性。

师:如图示,电杆、钢

三角形三边关系、三角形内角和定理练习题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角形三边关系、三角形内角和定理

一、三角形边的性质

1画出下列三角形是高

EF

B

2、已知:如图△ABC中AG是BC中线,AB=5cm AC=3cm,则△ABG和△ACG的周长的差为多少?△ABG和△ACG的面积有何关系?

3、三角形的角平分线、中线、高线都是( )

A、直线 B、线段 C、射线 D、以上都不对

4、三角形三条高的交点一定在( )

A、三角形的内部 B、三角形的外部

C、顶点上 D、以上三种情况都有可能

5、直角三角形中高线的条数是( )

A、3 B、2 C、1 D、0

6、判断:

(1) 有理数可分为正数和负数。

(2) 有理数可分为正有理数、正分数、负有理数和负分数。

7、现有10cm的线段三条,15cm的线段一条,20cm的线段一条,将它们任意组合可以得到几种不同形状的三角形?

二、三角形三边的关系

1、1.指出下列每组线段能否组成三角形图形

(1)a=5,b=4,c=3 (2)a=7,b=2,c=4

(3)a=6,b=6,c=12 (4)a=5,b=5,c=6

2.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。

3.已知等腰三角形的底边长为8cm,

三角形三边关系、三角形内角和定理练习题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角形三边关系、三角形内角和定理

一、三角形边的性质

1画出下列三角形是高

EF

B

2、已知:如图△ABC中AG是BC中线,AB=5cm AC=3cm,则△ABG和△ACG的周长的差为多少?△ABG和△ACG的面积有何关系?

3、三角形的角平分线、中线、高线都是( )

A、直线 B、线段 C、射线 D、以上都不对

4、三角形三条高的交点一定在( )

A、三角形的内部 B、三角形的外部

C、顶点上 D、以上三种情况都有可能

5、直角三角形中高线的条数是( )

A、3 B、2 C、1 D、0

6、判断:

(1) 有理数可分为正数和负数。

(2) 有理数可分为正有理数、正分数、负有理数和负分数。

7、现有10cm的线段三条,15cm的线段一条,20cm的线段一条,将它们任意组合可以得到几种不同形状的三角形?

二、三角形三边的关系

1、1.指出下列每组线段能否组成三角形图形

(1)a=5,b=4,c=3 (2)a=7,b=2,c=4

(3)a=6,b=6,c=12 (4)a=5,b=5,c=6

2.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。

3.已知等腰三角形的底边长为8cm,

作三角形及利用三角形全等测距离

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

作三角形及利用三角形全等测距离

【知识要点】

1、根据简单图形书写作法

2、作一个三角形与已知三角形全等 3、利用三角形全等测距离

【典型例题】

已知两边和夹角作三角形:

1、已知三角形的两边及其夹角,求作这个三角形.

已知:线段a,c,∠α。

求作:ΔABC,使得BC= a,AB=c,∠ABC=∠α。 作法与过程:

(1)作一条线段BC=a,

(2)以B为顶点,BC为一边,作角∠DBC=∠a; (3)在射线BD上截取线段BA=c;

(4)连接AC,ΔABC就是所求作的三角形。 已知两角和夹边作三角形:

2、已知三角形的两角及其夹边,求作这个三角形.

已知:线段∠α,∠β,线段c 。

求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c。

作法:(1)作____________=∠α;

(2) 在射线______上截取线段_________=c; (3) 以______为顶点,以_________为一边,

作∠______=∠β,________交_______于 点_______.ΔABC就是所求作的三角形.

已知三边作三角形:

3、已知三角形的三边,求作这个三角形.

已知:线段a,b,c。

求作:ΔABC

三角形典型题(三边关系)

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一、

已知△ABC,

(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.

(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)

(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.

考点:三角形的外角性质. 专题:计算题.

分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.

(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°. (3)根据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.

解答:解:(1)证明:延长BD交AC于点E.

∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED, ∵∠CED是△ABE的外角,∴∠CED=∠A+∠1