ansys壳单元

“ansys壳单元”相关的资料有哪些?“ansys壳单元”相关的范文有哪些?怎么写?下面是小编为您精心整理的“ansys壳单元”相关范文大全或资料大全,欢迎大家分享。

ansys关于薄板、厚板、壳单元的特性区别

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

一、 板壳弯曲理论简介 1. 板壳分类

按板面内特征尺寸与厚度之比划分:

当 L/h < (5~8) 时为厚板,应采用实体单元。

当 (5~8) < L/h < (80~100) 时为薄板,可选 2D 实体或壳单元 当 L/h > (80~100) 时为薄膜,可采用薄膜单元。 壳类结构按曲率半径与壳厚度之比划分:

当 R/h >= 20 时为薄壳结构,可选择薄壳单元。 当 6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。 当 R/h <= 6 时为厚壳结构。

上述各式中 h 为板壳厚度, L 为平板面内特征尺度,R 为壳体中面的曲率半径。 2. 薄板理论的基本假定

薄板所受外力有如下三种情况:

① 外力为作用于中面内的面内荷载。弹性力学平面应力问题。 ② 外力为垂直于中面的侧向荷载。薄板弯曲问题。 ③ 面内荷载与侧向荷载共同作用。

所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。

薄板通常采用 Kirchhoff-Love 基本假定:

① 平行于板中面的各层互不挤压,即 σz = 0。

② 直法线假定:该假定

2021年ANSYS_MPC连接梁壳单元实例

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

*欧阳光明*创编 2021.03.07 ANSYS MPC方法连接shell单元和beam单元详细教程

欧阳光明(2021.03.07)

2010-05-21 22:12:04 作者:zhz2004 来源:机械CADl论坛浏览次

数:621 网友评论 0 条

近日在论坛看到些用ansys的坛友问及beam单元和shell单元、beam单元和solid单元、shell单元和solid单元的连接问题。其实解决此类问题的方法不只一种,耦合约束方程、绑定接触都是有效的方法。其中耦合约束方程适用于小变形,而绑定接触即可用于小变形,也可用于大变形的几何非线性分析。下面,我将本人所做的用MPC方法连接shell单元和beam单元的详细步骤提供给大家,与各位共勉。添加shell单元(略)添加beam单元(略)添加shell实常数

*欧阳光明*创编 2021.03.07

*欧阳光明*创编 2021.03.07

*欧阳光明*创编

基于ansys驱动桥壳的设计 - 图文

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

JIU JIANG UNIVERSITY

毕 业 论 文

题 目 汽车驱动桥壳UG建模及 英文题目 Modeling by UG and Finite Element

Analyzing of Automobile Drive Axle Housing

有限元分析

院 系 机械与材料工程学院 专 业 车辆工程 姓 名 钟云耀 班 级 2009(机材A0931) 指导教师 丁志华

二O一三年六月

本科生毕业论文(设计)独创性声明

本人声明所呈交的毕业论文(设计)是本人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注和致谢的地方外,本论文中没有抄袭他人研究成果和伪造数据等行为

基于ansys驱动桥壳的设计 - 图文

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

JIU JIANG UNIVERSITY

毕 业 论 文

题 目 汽车驱动桥壳UG建模及 英文题目 Modeling by UG and Finite Element

Analyzing of Automobile Drive Axle Housing

有限元分析

院 系 机械与材料工程学院 专 业 车辆工程 姓 名 钟云耀 班 级 2009(机材A0931) 指导教师 丁志华

二O一三年六月

本科生毕业论文(设计)独创性声明

本人声明所呈交的毕业论文(设计)是本人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注和致谢的地方外,本论文中没有抄袭他人研究成果和伪造数据等行为

ansys单元详解

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

LINK1单元描述:

LINK1单元可用于不同的工程应用中,依具体的应用,该单元可模拟桁架、链杆及弹簧等。该二维杆单元每个节点的自由度只考虑x,y两个方向的线位移,是一种可承受单轴拉压的单元。因为只用于铰接结构,故本单元不能承受弯矩作用。而LINK8单元是这种单元的三维情况。

LINK1输入总结: 节点: I, J

自由度: UX, UY 实常数

AREA – 横截面面积 ISTRN – 初始应变 材料属性

EX, ALPX, DENS, DAMP 面荷载: None

体荷载:

温度 -- T(I), T(J) 热流量 -- FL(I), FL(J) 特性: 塑性 蠕变 膨胀

应力硬化 大变形 单元生死 KEYOPTS None

LINK10—三维仅受拉或仅受压杆单元 LINK10单元说明:

LINK10单元独一无二的双线性刚度矩阵特性使其成为一个轴向仅受拉或仅受压杆单元。使用只受拉选项时,如果单元受压,刚度就消失,以此来模拟缆索的松弛或链条的松弛。这一特性对于将整个钢缆用一个单元来模拟的钢缆静力问题非常有用。当需要松弛单元的性能,而不是关心松弛单元的运动时,它也可用于动力分析(带有惯性或阻尼效应)。

如果分析的目的时研究单

ansys单元详解

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

LINK1单元描述:

LINK1单元可用于不同的工程应用中,依具体的应用,该单元可模拟桁架、链杆及弹簧等。该二维杆单元每个节点的自由度只考虑x,y两个方向的线位移,是一种可承受单轴拉压的单元。因为只用于铰接结构,故本单元不能承受弯矩作用。而LINK8单元是这种单元的三维情况。

LINK1输入总结: 节点: I, J

自由度: UX, UY 实常数

AREA – 横截面面积 ISTRN – 初始应变 材料属性

EX, ALPX, DENS, DAMP 面荷载: None

体荷载:

温度 -- T(I), T(J) 热流量 -- FL(I), FL(J) 特性: 塑性 蠕变 膨胀

应力硬化 大变形 单元生死 KEYOPTS None

LINK10—三维仅受拉或仅受压杆单元 LINK10单元说明:

LINK10单元独一无二的双线性刚度矩阵特性使其成为一个轴向仅受拉或仅受压杆单元。使用只受拉选项时,如果单元受压,刚度就消失,以此来模拟缆索的松弛或链条的松弛。这一特性对于将整个钢缆用一个单元来模拟的钢缆静力问题非常有用。当需要松弛单元的性能,而不是关心松弛单元的运动时,它也可用于动力分析(带有惯性或阻尼效应)。

如果分析的目的时研究单

ANSYS—接触单元说明

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

参考ANSYS的中文帮助文件

接触问题(参考ANSYS的中文帮助文件)

当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、 不互相渗透;

2、 能够互相传递法向压力和切向摩擦力; 3、 通常不传递法向拉力。

接触分类:刚性体-柔性体、柔性体-柔性体

实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度

――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件 ――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵:

FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。

FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。

ICONT:初

ansys单元介绍 - 图文

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

LINK1单元描述:

LINK1单元可用于不同的工程应用中,依具体的应用,该单元可模拟桁架、链杆及弹簧等。该二维杆单元每个节点的自由度只考虑x,y两个方向的线位移,是一种可承受单轴拉压的单元。因为只用于铰接结构,故本单元不能承受弯矩作用。有关此单元的更详细说明请见《ANSYS, Inc. Theory Reference 》。而LINK8单元是这种单元的三维情况。 LINK1的几何模型图:

LINK1输入数据:

上图给出了本单元的几何图形、节点坐标及单元坐标系。单元通过两个节点、横截面面积及初始应变和材料属性定义。单元的X轴方向为沿单元长度从节点I指向节点J。初始应变通过Δ/L给定,Δ为单元长度L(由I,J节点坐标算得)与0应变单元长度之差。

在“节点与单元荷载”中有关于单元荷载的描述。可以在节点上输入温度或热流量作为单元的体荷载。节点I上的温度T(I)默认为TUNIF,节点J上的温度默认为T(I)。对于热流量与温度的设定基本相同,只是默认值不在是TUNIF而成为0。还可通过命令LUMPM得到一个集中质量表达式,这对某些如波的传播的分析是很有用的。 LINK1输入总结:

节点:

I, J 自由度:

UX, UY 实常数

AREA – 横截

ANSYS中的超单元

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

ANSYS 中的超单元

摘自htbbzzg的博客,网易

从 8.0 版开始,ANSYS 中增加了超单元功能,本文通过一些实际例子,探讨了 ANSYS 中超单元的具体使用。

1. 使用超单元进行静力分析

根据 ANSYS 帮助文件,使用超单元的过程可以划分为三个阶段 (称为 Pass):

(1) 生成超单元模型 (Generation Pass) (2) 使用超单元数据 (Use Pass) (3) 扩展模型 (Expansion Pass) 下面以一个例子加以说明:

一块板,尺寸为 20×40×2,材料为钢,一端固支,另一端承受法向载荷。 首先生成原始模型 se_all.db,即按照整个结构进行分析,以便后面与超单元结果进行比较:

首先生成两个矩形,尺寸各为 20×2。 然后定义单元类型 shell63; 定义实常数 1 为: 2 (板厚度)。 材料性能:

弹性模量 E=201000; 波松比 μ=0.3; 密度 ρ=7.8e-9; 单位为 mm-s-N-MPa。 采用边长 1 划分单元;

一端设置位移约束 all,另一端所有 (21 个) 节点各承受 Z 向力 5。 计算模型如下图:

静力分析的计算结果如下:

abaqus系列教程-05应用壳单元

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

5 应用壳单元

应用壳单元可以模拟结构,该结构一个方向的尺度(厚度)远小于其它方向的尺度,并忽略沿厚度方向的应力。例如,压力容器结构的壁厚小于典型整体结构尺寸的1/10,一般就可以用壳单元进行模拟。以下尺寸可以作为典型整体结构的尺寸: ? ? ? ?

支撑点之间的距离。

加强件之间的距离或截面厚度有很大变化部分之间的距离。 曲率半径。

所关注的最高阶振动模态的波长。

ABAQUS壳单元假设垂直于壳面的横截面保持为平面。不要误解为在壳单元中也要求厚度必须小于单元尺寸的1/10,高度精细的网格可能包含厚度尺寸大于平面内尺寸的壳单元(尽管一般不推荐这样做),实体单元可能更适合这种情况。

5.1 单元几何尺寸

在ABAQUS中具有两种壳单元:常规的壳单元和基于连续体的壳单元。通过定义单元的平面尺寸、表面法向和初始曲率,常规的壳单元对参考面进行离散。但是,常规壳单元的节点不能定义壳的厚度;通过截面性质定义壳的厚度。另一方面,基于连续体的壳单元类似于三维实体单元,它们对整个三维物体进行离散和建立数学描述,其动力学和本构行为是类似于常规壳单元的。对于模拟接触问题,基于连续体的壳单元与常规的壳单元相比更加精确,因为它可以在双面接触中考虑厚度的变化。然而,