微分方程模型例题

“微分方程模型例题”相关的资料有哪些?“微分方程模型例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微分方程模型例题”相关范文大全或资料大全,欢迎大家分享。

节微分方程模型

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第三节 微分方程模型

本节介绍确定性动态系统的微分方程建模。首先回顾物理领域的微分方程模型,然后介绍今非物理领域的微分方程模型。

一、徽分方程应用举例

人们对于微分方程的研究,早在十六七世纪微积分建立的时候就已经开始了,在17世纪和18世纪初得到了迅速的发展,成为研究自然现象的有力的工具。早期的研究与几何及力的研究关系密切。在17、18世纪,人们借助于微分方程,在力学、天文学、物理学等领域中,取得了重要的成就。

在一些应用问题中, 往往不能直接找出所需要的函数关系。 但是,可以根据问题所提供的线索,列出含有待定函数及其导数的关系式,称这样的关系式为微分方程模型。给出微分方程模型之后,对它进行研究,找出未知函数这一过程称为解微分方程。

下面给出的几个问题都是与时间t有关。对于一个依赖于时间t的量y的情况, 建立一个关于

,y与t的关系式, 它在任何时刻均成立。对这个方程积分, 便得到一个只含

的新方程。新方程中含有积分常数, 并且对于任何特定的t仍然成立。

。对于任何确

有y和t而不含

然后,利用问题中的一些特定信息,确定这些积分常数,于是,得函数定的t0,都可以算出

一般来说,求解一个应用问题时,可以按照如下步骤:

节微分方程模型

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第三节 微分方程模型

本节介绍确定性动态系统的微分方程建模。首先回顾物理领域的微分方程模型,然后介绍今非物理领域的微分方程模型。

一、徽分方程应用举例

人们对于微分方程的研究,早在十六七世纪微积分建立的时候就已经开始了,在17世纪和18世纪初得到了迅速的发展,成为研究自然现象的有力的工具。早期的研究与几何及力的研究关系密切。在17、18世纪,人们借助于微分方程,在力学、天文学、物理学等领域中,取得了重要的成就。

在一些应用问题中, 往往不能直接找出所需要的函数关系。 但是,可以根据问题所提供的线索,列出含有待定函数及其导数的关系式,称这样的关系式为微分方程模型。给出微分方程模型之后,对它进行研究,找出未知函数这一过程称为解微分方程。

下面给出的几个问题都是与时间t有关。对于一个依赖于时间t的量y的情况, 建立一个关于

,y与t的关系式, 它在任何时刻均成立。对这个方程积分, 便得到一个只含

的新方程。新方程中含有积分常数, 并且对于任何特定的t仍然成立。

。对于任何确

有y和t而不含

然后,利用问题中的一些特定信息,确定这些积分常数,于是,得函数定的t0,都可以算出

一般来说,求解一个应用问题时,可以按照如下步骤:

_常微分方程_例题分析

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第18卷第2期2005年4月

高等函授学报(自然科学版)

JournalofHigherCorrespondenceEducation(NaturalSciences)

Vol.18No.2April2005

文章编号:1006-7353(2005)02-0022(08)-05

*

《常微分方程》例题分析

徐胜林

(华中师范大学数学与统计学学院,武汉 430079)

摘要:本文对《常微分方程》的一些典型例题进行剖析,讲述解题的思路,归纳解题的规律,指出必须注意的事项,以帮助学生进一步理解基本概念,掌握基本方法,提高学生的解题能力。

关键词:常微分方程;解题分析

中图分类号:O175.1 文献标识码:A

在学习《常微分方程》这门课程的过程中,往往要演算大量的习题,以加深对基本概念、基本方法、基本技巧的理解和记忆,达到灵活运用的程

度,但在解题时,经常会遇到各种各样的困难。本文通过对一些典型例题进行剖析,讲述解题的思路,归纳解题的方法和技巧,以帮助学生提高解题能力,熟练演算技巧,巩固所学知识。

例1 设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x

数学建模~~微分方程模型

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

求实

创新

团结

奉献

第六章

微分方程模型

求实

创新

团结

奉献

本章内容 微分方程基本概念及建模方法 一阶微分方程(组)模型 稳定性模型

求实

创新

团结

奉献

一、微分方程基本概念及建模方法

微分方程的阶 解:特解、通解、解析解、数值解 初值问题 在实际问题中,“改变”、“变化”、“增加”、“减少 ”等关键词提示我们什么量在变化,关键词“速率”、“增 长”、“衰变”、“边际的”等常涉及导数。

求实

创新

团结

奉献

建立微分方程常用方法

运用已知物理定理 利用平衡与增长式 运用微元法

应用分析法

求实

创新

团结

奉献

1、运用已知物理定律

例1、物体冷却过程将物体放置在空气中,在时刻t=0时,测量得它的温度为u0=1500C,10分 钟后测量得温度为u1=1000C.我们要求此物体的温度u和时间t的关系,并计 算20分钟后物体的温度。这里我们假定空气的温度保持在ua=240C. Newton冷却定律:将温度为T的物体放入处于常温m的介质中时,T的 变化速率正比于 T与周围介质的温度差。解:设物体在 t 时刻的温度为 u u t , t 0 , 根据牛顿冷却定律知, 成正比,建立模型如下: du k (u u a ) dt

_常微分方程_例题分析

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第18卷第2期2005年4月

高等函授学报(自然科学版)

JournalofHigherCorrespondenceEducation(NaturalSciences)

Vol.18No.2April2005

文章编号:1006-7353(2005)02-0022(08)-05

*

《常微分方程》例题分析

徐胜林

(华中师范大学数学与统计学学院,武汉 430079)

摘要:本文对《常微分方程》的一些典型例题进行剖析,讲述解题的思路,归纳解题的规律,指出必须注意的事项,以帮助学生进一步理解基本概念,掌握基本方法,提高学生的解题能力。

关键词:常微分方程;解题分析

中图分类号:O175.1 文献标识码:A

在学习《常微分方程》这门课程的过程中,往往要演算大量的习题,以加深对基本概念、基本方法、基本技巧的理解和记忆,达到灵活运用的程

度,但在解题时,经常会遇到各种各样的困难。本文通过对一些典型例题进行剖析,讲述解题的思路,归纳解题的方法和技巧,以帮助学生提高解题能力,熟练演算技巧,巩固所学知识。

例1 设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x

数学建模 微分方程模型

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

人口模型在研究某些实际问题时,经常无法直接得到各变量之间的联系,问题的特 征往往会给出关于变化率的一些关系。利用这些关系,我们可以建立相应的微 分方程模型。在自然界以及工程技术领域中,微分方程模型是大量存在的。它 甚至可以渗透到人口问题以及商业预测等领域中去,其影响是非常广泛的。 从现在起,我们将向大家介绍一些很著名的微分方程模型,它们中,最简 单,也是最直观的,就是人口模型。对于人口模型,我们向大家介绍两个模型。 1、MALTHUS模型 18世纪末,英国人Malthus在研究了百余年的人口统计资料后认为,在 人口自然增长过程中,净相对增长率(出生率减去死亡率为净增长率)是常数。 设时刻t的人口为N(t),净相对增长率为r,我们把N(t)当作连续变 量来考虑。按照Malthus的理论,在t到t+ t时间内人口的增长量为N ( t Δt ) N ( t ) r Δt N ( t )

N ( t Δt ) N ( t ) r N( t ) Δt

令 t→0,则得到微分方程、dN rN dt

设t=0时人口为N0,即有Nt 0

N0

我们易求得微分方程在上面的初始条件下的解为 N ( t ) N0 ert 如果r>

2010数模讲座--微分方程模型

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

微分方程模型(动态模型) 微分方程模型(动态模型) 在研究某些实际问题时, 在研究某些实际问题时,经常无法直接得到各变量 之间的联系, 之间的联系,问题的特性往往会给出关于变化率的一些 关系。利用这些关系, 关系。利用这些关系,我们可以建立相应的微分方程模 在自然界以及工程技术领域中, 型。在自然界以及工程技术领域中,微分方程模型是大 量存在的。它甚至可以渗透到人口问题以及商业预测等 量存在的。 领域中去,其影响是广泛的。 领域中去,其影响是广泛的。 ? 随时间(空间)变化的数量关系 随时间(空间) ? 微分方程: 含有未知函数的导数(或微分)的方程 微分方程: 含有未知函数的导数(或微分) ? 例: 人口模型 、种群竞争模型 1
动态模型的作用: 动态模型的作用: ? 描述对象特征随时间 空间 的演变过程 描述对象特征随时间(空间 空间)的演变过程 ? 分析对象特征的变化规律 ? 预报对象特征的未来性态 ? 研究控制对象特征的手段
微分方程建模的方法: 微分方程建模的方法: ? 根据函数及其变化率之间的关系确定函数 根据函数及其变化率 变化率之间的关系确定函数 ? 根据建模目的和问题分析作出简化假设 内在规律或用类比法建立微分方程 ? 按照内

微分方程与差分方程_详解与例题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第七章 常微分方程与差分方程

常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。

【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler)方程;微分方程的简单应用。

【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。

【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可

微分方程与差分方程_详解与例题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第七章 常微分方程与差分方程

常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。

【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler)方程;微分方程的简单应用。

【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。

【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可

实验四 传染病模型 - 微分方程模型(1)

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

实 验 六

实验项目:传染病模型——微分方程模型实验

实验目的:1.进一步巩固、加强微分方程模型的建模、求解能力; 2.学习掌握用数学软件包求解微分方程数值解的相关命令。 实验内容:1.建模实例,传染病问题等; 2.编程求解。

一、模型实例-----传染病模型

? 问题: 有一种传染病(如SARS、甲型H1N1)正在流行。现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。

? 1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求

t时刻的感染人数。

m? 2、假设环境条件下所允许的最大可感染人数为 。单位时间内感染人

数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型

x求时刻

t的感染人数。

实验方法与步骤 1、问题分析

a、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 b、问题表述中已给出了各子问题的一些相应的假设。

c、