复变函数1\/z的积分
“复变函数1\/z的积分”相关的资料有哪些?“复变函数1\/z的积分”相关的范文有哪些?怎么写?下面是小编为您精心整理的“复变函数1\/z的积分”相关范文大全或资料大全,欢迎大家分享。
复变函数与积分本科(1)
单项选择题:
以下各题只有一个正确答案,请将它选择出来(4分/题)。
1. 复数8-6 i的模等于 ( )。 A. –10 B. 10 C. ?10 D. 10
2. 复数-6-8i的主辐角等于 ( )。
A. arctan(4/3) B. π– arctan(4/3) C.–π– arctan(4/3) D. –π + arctan(4/3)
3. ( 2 + i ) ( 2 –i ) = ( )。
A. 5 B. 3 C. 1 D. 4 i
4. ( 1 –i )6 = ( )。
A. 8 i B. 64 i C. – 8 i D. – 64 i
5. 以下( )不是方程z5 – 32 i = 0 的根。 A. 2e
i9?10B. 2i C. 2e-i3?10 D. 2ei11?10
6. 以下不等式中,能够确定一个有界单连通域的是( )。 A. Imz> 1 B. |arg z| <π/4 C. | 1/z | > 0.5 D. |z| > 2
7. 将圆周|z+i | = 2向左平移一个单位,再向下
复变函数与积分变换试题1
复变函数与积分变换试题
本试题分两部分,第一部分为选择题,1页至3页,第二部分为非选择题,4页至8页,共8页;选择题40分,非选择题60分,满分100分,考试时间150分钟。
第一部分 选择题
一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个选项中只有
一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1. 复数z?16-8i的辐角为( )
25252A. arctan1 B.-arctan1 C.π-arctan1 D.π+arctan1
2222.方程Rez2?1所表示的平面曲线为( )
A. 圆 B.直线 C.椭圆 D.双曲线 3.复数z?-3(cos)的三角表示式为( ) 54444A.-3(cos?,+isin?) B.3(cos?,-isin?)
55554444C.3(cos?,+isin?) D.-3(cos?,-isin?)
55554.设z=cosi,则( )
A.Imz=0 B.Rez=π
复变函数的积分 复习题
第三章、复变函数的积分 习题课:
1、 分别计算沿(1)直线段;(2)单位圆(
(3)单位圆的右半圆的下列积分:
|z|?1)的左半圆;
I??|z|dz。
?ii
2、 计算积分:
I??Rezdz,
L在这里L分别表示:(1)单位圆(按反时针方向从1到1取积分);(2)从1沿直线段到2。
3、 设函数
zzf(z)当|z?z0|?r0(0?r0?1)时是连续
的。令M(r)表示|f(z)|在|z?z0|?r?r0上的最
大值,并且假定
r???试证明
limM(r)?0。
r???Kr在这里
lim?f(z)dz?0
Kr是圆|z?z0|?r。
4、 如果满足上题条件的函数
析,那么对任何
f(z)还在|z?z0|?r0内解
r?r0,
?
5、 计算积分:
Krf(z)dz?0
1?|z|?2z4?1dz。
6、 设
f(z)及g(z)在单连通区域D内解析,证明:
??????
?f(z)g'(z)dz?f(z)g(z)|??f'(z)g(z)dz
在这里从的。
?到?的积分是沿D内连接?及?的一条简单曲线取
7、 计算积分: (1)
I??Cdz; (2)I?lnzdz,
?CzC表示单位圆(按反时针方向从1到1取积分),而被积函
数分别取为按下列各
复变函数与积分变换试卷
重庆大学《复变函数与积分变换》(理工班)课程试卷 第 1 页 共 5 页
重庆大学 复变函数与积分变换(理工班) 课程试卷
s26.函数f(s)?2的拉氏逆变换L?1[f(s)]? 【 】
s?1A.?(t)?cost B.?(t)?cost
2009 ~2010学年 第 1 学期
课程号命题人: 名姓 密 弊号学作 绝 拒 、 纪 考 肃 严 级、年信 守 实封 诚 、 争 竞 平班、公业专 线 院学开课学院: 数理学院 :10020930
考试日期: 201001
考试方式:
考试时间: 120 分钟 题 号 一 二 三 四 五 六 七 八 九 十 总 分 得 分
一、单项选择题(每小题2分,共16分)
1.设z为复数,则方程z?z?2?i的解是 【 】 A.?34?i
复变函数积分方法总结 - 图文
复变函数积分方法总结
[键入文档副标题]
acer [选取日期]
复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,Arg=argz+2kπ 。利用直角坐标和极坐标的关系式x=rcosθ ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式eiθ=cosθ+isinθ。z=reiθ。
1.定义法求积分:
定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段zk-1 zk(k=1,2…
nn)上任取一点?k并作和式Sn= nk?1f(???)(zk-zk-1)= k?1f(???)?zk记
?zk= zk- zk-1,弧段zk-1 zk的长度 δ=1max{?Sk}(k=1,2…,n),当 δ→0≤k
复变函数积分(练习题)
基本要求
1. 正确理解复变函数积分的概念;
?Cf(z)dz?lim?f(?k)?zk
??0k?1n2. 掌握复变函数积分的一般计算法;
?Cf(z)dz??(u?iv)(dx?idy)??f(z(t))z?(t)dt
C??3. 掌握并能运用柯西—古萨基本定理和牛顿—莱布尼茨公式来计算积分;
??Cf(z)dz?0,?f(z)dz?G(z1)?G(z0)
z0nz14. 掌握闭路变形定理、复合闭路定理,并能运用其计算积分;
??Cf(z)dz??(dz),??f(z)dz????f(z)dz ?fzC1Ck?1Ck5. 掌握并能熟练运用柯西积分公式;
??Cf(z)dz?2?if(z0) z?z06. 掌握解析函数的高阶导数公式,理解解析函数的导数仍是解析函数,会用高阶导数公式
计算积分。
2?if(z0)f(z)dz? ??C(z?z0)n?1n!一、填空题
1.
dz; ??|z|?1z2?2z?2?( )
z2?12.?; ?|z?1|?1z2?1dz?( )
3.
cosz; ??|z|?1(z??)2dz?( )
4.设
复变函数与积分变换解读
复变函数与积分变换解
读
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
复变函数与积分变换
课程名称:复变函数与积分变换
英文译名:Complex Function and Integral Transformation
课程编码:070102B06
适用专业:信息与计算科学
课程类别:专业必修
学时数:48 学分:3
编写执笔人:韩仲明审定人:刘晓华
编写日期:2005年4月
一、本课程的内容、目的和任务:
复变函数与积分变换是高等师范院校数学专业的基础课程之一,是数学分析的后续课程,其任务是使学生获得复变函数与积分变换的基本理论与方法。它在微分方程、概率论、力学等学科中都有应用,其方法是自动控制、自动化、信号处理的常用方法之一,本课程主要讨论复变函数和积分变换。内容主要包括:复数运算,解析函数,初等函数,复变函数积分理论,级数展开及留数理论,保形映射,拉普拉斯变换,富里叶变换。复变函数与积分变换是微积分学在复数域上的推广和发展,通过本课程的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数与积分变换在联系和指导中
复变函数与积分变换 - 图文
www.4juan.com 自考及各类其他考试历年试题免费免注册下载 超过2万套word文档试题和答案
全国2009年4月自考复变函数与积分变换试题
一、单项选择题(本大题共10小题,每小题2分,共20分)
1.设z=1-i,则Im(1z2)=( )
A.-1 B.-12
C.12 D.1
2.复数z=3?i2?i的幅角主值是( )
A.0 B.π4
C.π2 D.3π4
3.设n为整数,则Ln(-ie)=( ) A.1-π2i
B.(2nπ?π2)i
C.1+2(nπ?π2)i
D.1+2(nπ?π2)i4.设z=x+iy.若f (z)=my3+nx2y+i(x3-3xy2)为解析函数,则( A.m=-3,n=-3 B.m=-3,n=1 C.m=1,n=-3 D.m=1,n=1
i5.积分?2ieπzdz?( )
A.1?(1?i) B.1+i C.
2i
D.
2??
6.设C是正向圆周z?1?1,则?sin(?z/3)Cz2?1dz=( ) A.?32?i B.?3?i C.
34?i D.
32?i 7.设C是正向圆周z?3,则
?sinzCdz=( ) (z??2)3A.?2?i B.??i C.?i
D.2?i
复变函数与积分变换试卷
重庆大学《复变函数与积分变换》(理工班)课程试卷 第 1 页 共 5 页
重庆大学 复变函数与积分变换(理工班) 课程试卷
s26.函数f(s)?2的拉氏逆变换L?1[f(s)]? 【 】
s?1A.?(t)?cost B.?(t)?cost
2009 ~2010学年 第 1 学期
课程号命题人: 名姓 密 弊号学作 绝 拒 、 纪 考 肃 严 级、年信 守 实封 诚 、 争 竞 平班、公业专 线 院学开课学院: 数理学院 :10020930
考试日期: 201001
考试方式:
考试时间: 120 分钟 题 号 一 二 三 四 五 六 七 八 九 十 总 分 得 分
一、单项选择题(每小题2分,共16分)
1.设z为复数,则方程z?z?2?i的解是 【 】 A.?34?i
复变函数与积分变换考试题(1)
复变函数与积分变换试题
课程代码:02199
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.设f(z)?z2?3iz?2,则f(z)的零点个数为( ) A.0 B.1 C.2
D.3
2.函数f(z)?z2在复平面上( ) A.处处不连续
B.处处连续,处处不可导 C.处处连续,仅在点z=0可导 D.处处连续,仅在点z=0解析
3.2sini=( ) A.(e?1?e)i B.(e?1?e)i C.(e?e?1)i
D.e?e?1
4.设C是正向圆周z?2,则
??dz=( Cz2) A.0 B.?2?i C.?i
D.2?i
0的正向简单闭曲线,则??z55.设C是绕点z0?dz? ( ) C(z?z30)A.2?i B.20?z30i C.2?z50i
D.0
6.C1,C1与z?2?1,则12?i?C?ez2分别是正向圆周z?dz?1??sinzdz?( 1z?22?iC2z?2A.2?i
B.cos2
浙02199# 复变函数与积分变换试卷 第1页(共4页)
)