离散数学第二章答案
“离散数学第二章答案”相关的资料有哪些?“离散数学第二章答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“离散数学第二章答案”相关范文大全或资料大全,欢迎大家分享。
离散数学第二章
2.1 等值式
一、等值式的概念
两公式什么时候代表了同一个命题呢?抽象地看,它们的真假取值完全相同时即代表了相同的命题。
设公式A,B共同含有n个命题变项,可能A或B有哑元,若A与B有相同的真值表,则说明在2n个赋值的每个赋值下,A与B的真值都相同。于是等价式AB应为重言式。
定义2.1 设A,B式两个命题公式,若A,B构成的等价式A
B是等值的,记作A
B.
B为重言式,则称A与
定义中给出的符号不是联结词符,它是用来说明A与B等值(AB是重言式)的一种记法,因而是元语言符号。此记号在下文中频繁出现,千万不要将它与混为一谈,同时也要注意它与一般等号=的区别。 判断等值式有如下方法: 1.真值表
2.等值演算
3.范式
二、用真值表判断公式的等值
例2.1 判断下面两个公式是否等值:
┐(p∨q)与┐p∧┐q
解 用真值表法判断┐(p∨q)
(┐p∧┐q)是否为重言式。此等价式的真值表如表2.1
(┐p∧┐q)。
所示,从表中可知它是重言式,因而┐(p∨q)与┐p∧┐q等值,即┐(p∨q)
其实,在用真值表法判断AB是否为重言式时,真值表的最后一
离散数学(屈婉玲版)第二章习题答案
2.13 设解释I为:个体域DI ={-2,3,6},一元谓词F(X):X(X):X>5,R(X):X(1) 解:
x(F(x)x(F(x)(F(-2) ((-2((1 00
(2)
x(R(x)
F(x))
G(5) G(5)
F(3)) (( 3
(R(6)7)
(3
F(6))3))
03)
7。在I下求下列各式的真值。
3,G
G(x)) G(x)) G(-2))
(F(3) ((3((0 G(3)) 3)
(F(6) (3>5)) 0))
G(6)) ((6
3)
(6<5))
(-2>5))
0))
0))((1 0
解:x(R(x)(R(-2)((-2
F(x))
F(-2)) (R(3)7)
(-2
3))
G(5)
7)
(( 6
(63)) (5>5) (1 10
1) 1
(1 0
1) 0
(1
0)
0
(3)解:
x(F(x)x(F(x)
G(x)) G(x))
(F(3)
((3 (0
G(3)) 3) 1)
(F(6) (3>5))
G(6)) ((6
3)
(6>5))
(F(-2) ((-2(1
G(-2)) 3)
(-2>5)) (1
0)
0)
1 1
1 1
2.14 求下列各式的前束范式,要求
离散数学答案(尹宝林版)第二章习题解答
第二章 谓词逻辑
习题与解答
1. 将下列命题符号化:
(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。 (3) 至少有一种金属可以溶解在所有液体中。 (4) 每个人都有自己喜欢的职业。 (5) 有些职业是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。令
T(x):x是火车, C(x):x是汽车, F(x,y):x比y跑得快。
“所有的火车都比某些汽车快”可以符号化为?x(T(x)??y(C(y)?F(x,y)))。 (2) 取论域为所有物质的集合。令
M(x):x是金属, L(x):x是液体, D(x,y):x可以溶解在y中。
“任何金属都可以溶解在某种液体中” 可以符号化为?x(M(x)??y(L(y)?D(x,y)))。 (3) 论域和谓词与(2)同。“至少有一种金属可以溶解在所有液体中” 可以符号化为
?x(M(x)??y(L(y)?D(x,y)))。
(4) 取论域为所有事物的集合。令
M(x):x是人, J(x):x是职业, L(x,y):x喜欢y。
“每个人都有自己喜欢的职业” 可以符号化为?x(M(x)??y(J(y)?L(x,y))) (5)论域和谓词与(4)同。“有些
离散数学第9章习题答案
习题9
1. 设G是一个(n,m)简单图。证明:,等号成立当且仅当G是完全图。
证明:(1)先证结论:
因为G是简单图,所以G的结点度上限 max(d(v)) ≤ n-1, G图的总点度上限为 max(Σ(d(v)) ≤ n﹒max(d(v)) ≤ n(n-1) 。根据握手定理,G图边的上限为 max(m) ≤ n(n-1)/2,所以。 (2) =〉G是完全图 因为G具有上限边数,假设有结点的点度小于n-1,那么G的总度数就小于上限值,边数就小于上限值,与条件矛盾。所以,G的每个结点的点度都为n-1,G为完全图。 G是完全图 =〉 因为G是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G的边数 。■
2. 设G是一个(n,n+1)的无向图,证明G中存在顶点u,d(u)≥3。
证明:反证法,假设,则G的总点度上限为max(Σ(d(u)) ≤2 n,根据握手定理,图边的上限为max(m) ≤ 2n/2=n。与题设m = n+1,矛盾。因此,G中存在顶点u,d(u)≥3。■
3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5); (2)
离散数学课后习题答案二
习题3.7
1. 列出关系{?a,b,c,d?|a,b,c,d?Z且a?b?c?d?6}中所有有序4元解 {?a,b,c,d?|a,b,c,d?Z且a?b?c?d?6}
??组。
?{?1,1,1,6?,?1,1,6,1?,?1,6,1,1?,?6,1,1,1?,?1,1,2,3?,?1,1,3,2?,?1,2,1,3?,?1,3,1,2?,
?1,2,3,1?,?1,3,2,1?,?2,3,1,1?,?3,2,1,1?,?2,1,3,1?,?3,1,2,1?,?2,1,1,3?,?3,1,1,2?
2. 列出二维表3.18所表示的多元关系中所有5元组。假设不增加新的5元组,找出二维表3.18所有的主键码。
表3.18 航班信息
航空公司 Nadir Acme Acme Acme Nadir Acme Nadir
解 略
3. 当施用投影运算?2,3,5到有序5元组?a,b,c,d?时你能得到什么?
解 略
4. 哪个投影运算用于除去一个6元组的第一、第二和第四个分量?
解 略
5. 给出分别施用投影运算?1,2,4和选择运算?航空公司=Nadir到二维表3.18以后得到的表。 解 对航班信息二维表进行投影运算?2,3,5
离散数学第10章习题答案
第10章 图
第10章习题答案
1.解 (1)设G有m条边,由握手定理得2m=?d(v)=2+2+3+3+4=14,所以G的边数7条。
v?V(2)由于这两个序列中有奇数个是奇数,由握手定理的推论知,它们都不能成为图的度数列。 (3) 由握手定理得?d(v)=2m=24,度数为3的结点有6个占去18度,还有6度由其它结点占有,
v?V其余结点的度数可为0、1、2,当均为2时所用结点数最少,所以应由3个结点占有这6度,即图G中至多有9个结点。
2.证明 设v1、v2、?、vn表示任给的n个人,以v1、v2、?、vn为结点,当且仅当两人为朋友时其对应的结点之间连一条边,这样得到一个简单图G。由握手定理知
?d(v)=3n必为偶数,从而n必为偶数。
kk?1n3. 解 由于非负整数列d=(d1,d2,…,dn)是可图化的当且仅当?di≡0(mod 2),所以(1)、(2)、
i?1n(3)、(5)能构成无向图的度数列。
(1)、(2)、(3)是可简单图化的。其对应的无向简单图如图所示。
(5)是不可简单图化的。若不然,存在无向图G以为1,3,3,3度数列,不妨设G中结点为v1、v2、
v3、v4,且d(v1)=1,d(v2)=d(v3)=d
2006离散数学a(答案)
2006年下半年《离散数学》(闭卷)70学时
离散数学(A卷)
闭卷、70学时
一、 填空选择题 (每空1分,共26分)
1、给定命题公式如下:p?(q??r)。该公式的成真赋值为A,成假赋值为B,公式的类型为C。
供选择的答案
A:①无;②全体赋值;
③010,100,101,111;④010,100,101,110,111。
B:①无;②全体赋值;③000,001,011;④000,010,110。 C:①重言式;②矛盾式;③可满足式。
(?x)(P(y)?Q(x,y))?(?y)R(x,y)中,?x的辖域是 P(z)→Q(x,z) , 2、在公式
?y的辖域是 R(x,z) 。
3、设Z+={x∣x∈Z∧X>0},π1, π2,π3是Z+的3个划分。
π1={{x}∣x∈Z+},π2={S1,S2},S1为素数集,S2=Z+-S1.π3={Z+}, (1)3个划分块中最多的是A,最少的是B. +++
(2)划分π1对应的是Z上的C,π2对应的是Z上的D,π3对应的是Z上的E. 供选择的答案
A:( ①),B:( ③ ) ①π1, ②π2,③π3. C:( ⑧)
离散数学作业答案
第一章
1. 假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A
和B表示ECNU不必学习离散数学的二年级的学生的集合。
试求: P(?) P(P(?)) P(P(P(?)))
2. (1) (2) (3)
3. 在1?200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个?
能被5整除的有40个, 能被15整除的有13个,
∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。
第三章
1. (1) (2) (3) (4) (5)
下列语句是命题吗? 2是正数吗? x2+x+1=0。 我要上学。
明年2月1日下雨。
如果股票涨了,那么我就赚钱。
2. 请用自然语言表达命题(p??r)?(q??r),其中p、q、r为如下命题: p:你得流感了
q:你错过了最后的考试 r:这门课你通过了
3. 通过真值表求p?(p?(q?p))的主析取范式和主合取范式。
4. 给出p?(q?s),q,p??r?r?s的形式证明。
第四章
1. 将?x(C(x)??y(C(y)?F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同
班同学,个体域是学校全体
离散数学第8章 函数
离散数学第8章 函数
CHAPTER Eight
离散数学Discrete Mathematics
6/2/2013 9:02 PM
Discrete Math. , Chen Chen
离散数学第8章 函数
CHAPTER Eight
第八章 函数§8.1 函数的定义与性质
§8.2 函数的复合与反函数§8.3 双射函数与集合的基数§8.4一个电话系统的描述实例
6/2/2013 9:02 PM
Discrete Math. , Chen Chen
离散数学第8章 函数
§8.1 函数的定义与性质
CHAPTER Eight
定义8.1 设 F 为二元关系,若 x domF 都存在唯一的 y ranF 使xFy 成立, 则称F为函数。 对于函数F, 如果 xFy,则记y =F(x),并称y为 F 在 x 的值。 例8.1 设F1={<x1,y1>, <x2,y1>, <x3,y2>},F2={<x1,y1>, <x1,y2>}. 则F1是函数, 而F2不是函数。
定义8.2 设F、G是函数,则 F=G F G∧ G F.
注:如果F=G,那么它们满足:(1
离散数学第8章 函数
离散数学第8章 函数
CHAPTER Eight
离散数学Discrete Mathematics
6/2/2013 9:02 PM
Discrete Math. , Chen Chen
离散数学第8章 函数
CHAPTER Eight
第八章 函数§8.1 函数的定义与性质
§8.2 函数的复合与反函数§8.3 双射函数与集合的基数§8.4一个电话系统的描述实例
6/2/2013 9:02 PM
Discrete Math. , Chen Chen
离散数学第8章 函数
§8.1 函数的定义与性质
CHAPTER Eight
定义8.1 设 F 为二元关系,若 x domF 都存在唯一的 y ranF 使xFy 成立, 则称F为函数。 对于函数F, 如果 xFy,则记y =F(x),并称y为 F 在 x 的值。 例8.1 设F1={<x1,y1>, <x2,y1>, <x3,y2>},F2={<x1,y1>, <x1,y2>}. 则F1是函数, 而F2不是函数。
定义8.2 设F、G是函数,则 F=G F G∧ G F.
注:如果F=G,那么它们满足:(1