参数方程求导

“参数方程求导”相关的资料有哪些?“参数方程求导”相关的范文有哪些?怎么写?下面是小编为您精心整理的“参数方程求导”相关范文大全或资料大全,欢迎大家分享。

3.4隐函数、参数方程的求导

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

大学高等数学(大一)

第 三章

§3.4 隐函数和参数方程求导3. 4. 1 隐函数的导数 3. 4. 2 由参数方程确定的函数的导数 3. 4. 3 相关变化率问题 3. 4. 4 高阶导数机动 目录 上页 下页 返回 结束

大学高等数学(大一)

3. 4.1隐函数的微分法1.隐函数的概念

F x, y x 0, x I 成立, 则称 F x, y 0 确定了区间 I 里的一个隐函数 ;称形如 y f x 表示的函数为显函数 。若从方程 F x, y 0 中能求解出函数: y y x 或 x x y 则称该隐函数可以被显化。3 y 1 x ; 就确定了一个显函数 方程 x y 1 0 例如:

设方程 F x, y 0, 若存在函数 y y x , x I 使得

3

但要提请注意的是:并非隐函数均可被显化。 再如:5 7 方程. y 2 y x 3x 0 也确定 y 是 x 的函数 ,

但此隐函数不能被显化 。机动 目录 上页 下页 返回 结束

大学高等数学(大一)

2. 隐函数的求导法则 设方程 F x,

参数方程的概念

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

2.1.1 参数方程的概念

一、目标导学: 1.参数方程的概念 探究(见课本)

?x?100t? ?12(t为参数)y?500?gt?2?y 500 v=100m/s A O x

参数方程的定义:

2.圆的参数方程:

说明:(1)参数θ的几何意义是OM与x轴正方向的夹角。(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。

3.思考交流:参数方程消去参数t后,再将所得方程与原方程进行比较,体会参数方程的作用。

4.例题讲解(见课本): 二,设问释疑: 1,小组对学

2,小组群学

三,巩固提升:

1.已知P(x,y)圆C:x2+y2-6x-4y+12=0上的点。

y(1)求 x 的最小值与最大值

(2)求x-y的最大值与最小值

22

2.圆x+y=1上的点到直线3x+4y-25=0的距离最小值是 ;

3. 过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦:

为最长的直线方程是_________;为最短的直线方程是__________;

4.若实数x,y满足x2+y2-2x+4y=0,则x

参数方程习题(绝对物超所值)

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

参数方程

??x??1?2cos?,1.圆?(?为参数)被直线y?0截得的劣弧长为( )

??y?1?2sin?(A)

2π (B)π (C)22π (D)4π 22.在极坐标系中,圆??2被直线?sin??1截得的弦长为( ) A.3 B.2 C.23 D.3 3.已知在平面直角坐标系xOy中,圆C的参数方程为:??x?2cos?,(?为参数),以Ox为极轴建立极坐标系,

?y?2?2sin?,直线l的极坐标方程为:3cos??sin??0,则圆C截直线l所得弦长为 .

?22?x?4.(坐标系与参数方程选做题)在直角坐标系xOy中,曲线C1的方程是x?2y?5,C2的参数方程是?为参数),则C1与C2交点的直角坐标是 .

3t??y??t(t5.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同.已知曲线C的极坐标方程为??2(cos??sin?),斜率为3的直线l交y轴于点E(0,1). (Ⅰ)求C的直角坐标方程,l的参

参数方程、极坐标讲义

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

参数方程、极坐标 一.直线的参数方程

l(1)标准式 过点P0(x0,y0),倾斜角为?的直线(如图)的参数方程是

?x?x0?tcos? (t为参数)?y?y?tsin?0?????这里直线l的方向向量可以选定为(cos?,sin?),由P0P?t(cos?,sin?)引出直线的标准式参数方程,进而引入参数t的几何意义 (2)一般式 过定点P0(x0,y0)斜率k?tan??b的直线l的参数方程是 a?x?x0?at(t为参数) ② ?y?y?bt0?在一般式②中,参数t不具备标准式中t的几何意义,若a?b?1,②即为标准式,此时, t表示直线

22a?bt a?b?1,则动点P到定点P上动点P到定点P的距离;若00的距离2222?x?x0?tcos?l直线参数方程的应用:设过点P (t为参数)0(x0,y0),倾斜角为?的直线的参数方程是?y?y?tsin?0?l若P1,P2是上的两点,它们所对应的参数分别为t1,t2,则

(1) P1,P2两点的坐标分别是(x0?t1cos?,y0?t1sin?) ,(x0?t2cos?,y0?t2sin?) ; (2) PP12?t1?t2;

P所对应的参数为t,则t?(3)线段PP12的中

高中数学第2讲参数方程一曲线的参数方程1参数方程的概念2圆的参数方程练习新人教A版选修4 - 4

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

2 圆的参数方程

一、基础达标

1.已知O为原点,参数方程?A.1 C.3

2222?x=cos θ,?

??y=sin θ

(θ为参数)上的任意一点为A,则|OA|=( )

B.2 D.4

解析 |OA|=x+y=cosθ+sinθ=1,故选A. 答案 A

??x=a+2cos θ,

2.已知曲线C的参数方程是?(θ为参数),曲线C不经过第二象限,则实

?y=2sin θ?

数a的取值范围是( ) A.a≥2 C.a≥1 解析 ∵曲线C2

B.a>3 D.a<0

??x=a+2cos θ,2

的参数方程是?(θ为参数),∴化为普通方程为(x-a)

?y=2sin θ?

+y=4,表示圆心为(a,0),半径等于2的圆. ∵曲线C不经过第二象限,则实数a满足a≥2,故选A. 答案 A

3.圆心在点(-1,2),半径为5的圆的参数方程为( )

??x=5-cos θ,

A.?(0≤θ<2π) ?y=5+2sin θ???x=2+5cos θ,B.?(0≤θ<2π) ?y=-1+5sin θ???x=-1+5cos θ,C.?(0≤θ<π) ?y=2+5sin θ???x=-1+5cos θ,D.?(0≤θ<2π) ?y=2+5sin θ?

??x

《直线的参数方程》教学反思

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

《直线的参数方程》教学反思

我所教班级是文科班,学生的总体数学水平处于我校的中等水平,学生们对于数学这个学科本身的兴趣有限,对前面学过的有关直线和圆中的基本知识点掌握的一般。针对以上实际情况,我采用如下方案对参数方程进行了讲解。

一、讲解情况

第一,讲解学习本章的重要意义。通过本章节的教学使学生明白现实世界的问题是多维度的、多种多样的,仅仅用一种坐标系,一种方程来研究是很难解决现实世界中的复杂的问题的。在这一点上,参数方程有其自身的优越性,学习参数方程有其必要性。

第二,讲解参数方程的基本原理和基本知识。通过学习参数方程的基本概念、基本原理、基本方法,以及方程之间、坐标之间的互化,使学生明白坐标系及各种方程的表示方法是可以视实际需要,主观能动地加以选择的。

第三,讲解典型例题和解题方法。通过例题的讲解让学生们进一步巩固基础知识,同时还能熟练解题方法,为进一步学习数学和其他自然科学知识打好基础。

第四,布置课后练习。既可以巩固学过的知识,又可以达到温故而知新的效果。

二、成功之处

第一,突出教学内容的本质,注重学以致用。课堂不应该是 “一言堂”,

1

学生也不再是教师注入知识的“容器瓶”,课堂上,老师应为学生讲清楚相关理论、原理及思维方法,

直线的参数方程及应用

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

直线的参数方程及应用

一、直线的参数方程

1.定义:若 为直线l的倾斜角,则称e (cos ,sin )为直线l的(一个)方向向量.

2.求证:若P,Q为直线l上任意两点,e (cos ,sin )为l的方向向量,则有PQ//e.

证明:

3.设直线l过点M0(x0,y0)的倾斜角为 ,求它的一个参数方程.

归纳小结

二、弦长公式、线段中点参数值

证明:

例1 已知直线l:x y 1 0与抛物线y x2交于A,B两点,求线段AB的长和点M( 1,2)到A,B两点的距离之积.

x2y2

例2 经过点M(2,1)作直线l,交椭圆 1于A,B两点.如果点M恰好为线段AB的中点,

164

求直线l的方程.

练习

1.设直线l经过点M0(1,5),倾斜角为

3. (1)求直线l的参数方程;

(2)求直线l和直线x y 0的交点到点M0的距离; (3)求直线l和圆x2 y2 16的两个交点到点M0的距离的和与积.

2.已知经过点P(2,0),斜率为43的直线l和抛物线y2 2x相交于A,B两点,设线段AB的中点为M.求点M的坐标.

3.经过点M(2,1)作直线l交双曲线x2 y2 1于A,B两点,如果点M为线段AB的中点,求直线AB的方程.

4.经过抛物线y2 2px(p 0)外的

直线的参数方程教学设计

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

2.1 直线的参数方程(第一课时)教学设计【附教学反思】

九江三中 吴丛新

教学目标:

通过探究直线的参数方程的过程,使学生体会参数t的含义,并会利用参数t的几何意义解决有关弦长的问题,加深对参数方程的理解。 教学重点:直线参数方程的推导,参数t的几何意义的理解。 教学难点:理解和书写与直线正方向同向的单位向量,及参数t的几何意义的应用。

教学方法:问题教学,启发式教学。 教学用具:多媒体辅助教学。 教学环节: 一:复习引入

复习前一节曲线与参数方程中参数方程的概念,特别强调引入参数的意义。复习直线的普通方程的形式,特别强调点斜式。

【设计意图】:复习参数的意义为即将建立直线的参数方程中引入参数t做铺垫,复习点斜式为后面消参做准备。 二:直线的参数方程的推导

采用两种方法推导直线的参数方程,以加深对直线参数方程参数t的几何意义的理解。

(一) 利用直角三角形知识推导

【问题设置】直线l的正方向是什么?有向线段PM的数量是什么?如何利用直角三角形的知识求出动点M的坐标?

【设计意图】直线的正方向和有向线段的数量是两个全新的概念,北师大版教材正是基于这两个概念才能给出直线参数方程中参数t的几何意义,对t的几何意义的理解是本节的难点,这里需做好铺

极坐标和参数方程2

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

极坐标和参数方程训练二

一、选择题

1.直线l的参数方程为??x?a?t(t为参数),则点Pl上的点P1对应的参数是t1,1与P(a,b)?y?b?t之间的距离是( )

A.t1 B.2t1 C.2t21 D.2t1 ?2.参数方程为??x?t?1t(t为参数)表示的曲线是( )

??y?2A.一条直线 B.两条直线 C.一条射线 D.两条射线

??3.直线?x?1?1?2t3(t为参数)和圆x2?y2?16交于A,B两点, ???y??33?2t则AB的中点坐标为( )

A.(3,?3) B.(?3,3) C.(3,?3) D.(3,?3) 4.圆??5cos??53sin?的圆心坐标是( )

A.(?5,?4?3) B.(?5,??5?3) C.(5,3) D.(?5,3) 5.与参数方程为???x?t(t为参数)等价的普通方程为( )

??y?21?tA.x2?y24?1 B.x?y224?1(0?x?1) C.x2?y2y24?1(0?y?2) D.x2?4?1(0?x?1,0?y?2) 6.直线??x??2?t?y?

《圆的参数方程》教学设计

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

《圆的参数方程》教学设计

●教学目标

1.了解参数方程的概念;

2.理解圆的参数方程中θ的意义,熟练掌握圆心在原点与不在原点的圆的参数方程; 3.会把圆的参数方程与普通方程进行互化. ●教学重点 圆的参数方程 ●教学难点

圆的参数方程的理解和应用. 设置情境:

1.圆的标准方程与一般方程及其应用的回顾. 2.对圆的标准方程进行联想变形得圆的参数方程. Ⅱ. 1.参数方程与普通方程: 一般地,在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即

?x?f(t). ?y?g(t)?并且对于t的每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫这条曲线的参数方程.其中t叫参变数,简称参数.

相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫曲线的普通方程.

说明:参数方程中的参数可以有物理、几何意义,也可以没有明显意义. 2.圆的参数方程:

①圆心在原点,半径为r的圆的参数方程:??x?rcos?

?y?rsin?推导:设圆O的圆心在原点,半径是r,圆O与x轴的正半轴的交点是P0(图7—36)

设点在圆O上从点P0开始按逆时针方向运动到达点P,∠P0OP=θ,若点P坐标为(x,y),根据三