特殊角的三角函数教学反思
“特殊角的三角函数教学反思”相关的资料有哪些?“特殊角的三角函数教学反思”相关的范文有哪些?怎么写?下面是小编为您精心整理的“特殊角的三角函数教学反思”相关范文大全或资料大全,欢迎大家分享。
三角函数特殊角值表
三角函数特殊值
1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=
12
sin45°=cos45°= 22
tan30°=cot60°=
2
21
tan 45°=cot45°=1 3
2 21
3
45 1
60 1
说明:正弦值随角度变化,即0 30 45 60 90 变化;值从0
3 1变化,其余类似记忆.
2
3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:
① 有界性:(锐角三角函数值都是正值)即当0°< <90°时,
则0<sin <1; 0<cos <1 ; tan >0 ; cot >0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A<B<90°时,则sinA<sinB;tanA<tanB; cosA>cosB;cotA>cotB;特别地:若0°< <45°,则sinA<cosA;tanA<cotA 若45
最新三角函数特殊角值表
三角函数特殊值
角度 函数 角a的弧度 sin cos tan 0 30 45 60 90 120 135 150 180 270 360 0 0 1 0 π/6 1/2 √3/2 √3/3 π/4 √2/2 √2/2 1 π/3 √3/2 1/2 √3 π/2 1 0 2π/3 √3/2 -1/2 -√3 3π/4 √2/2 -√2/2 -1 5π/6 1/2 -√3/2 -√3/3 π 0 -1 0 3π/2 -1 0 2π 0 1 0
1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=
12 sin45°=cos45°= 22 tan30°=cot60°=
2 30? 3
2、列表法: 1
3 tan 45°=cot45°=1 32 2 1
3
45? 1
60? 1
值 角 函 数 sin? 0° 30° 45° 60° 90° 0 24 20 1 23 23 32 22 29 33 21 227 34 20 2不存在 cos? tan? cot? 不
三角函数复习课教学反思
本学期我上了一堂锐角三角函数的复习课,按照课标锐角三角函数难度应该不是很大,自己在了解学生的学情情况下,从锐角三角函数的定义、特殊角三角函数值、解直角三角形的应用等几个方面来着手复习;为了巩固学生对特殊角的三角函数值掌握,给出了一个表格让学生回答30°,45°,60°角的三角函数值,其实可能还有很多学生都没有巩固,集体回答也可能就是走了一下形式罢了,如果当时采用作业的形式课前发给学生做练习,效果可能会截然不同。
上复习课时所设计的题目还是过多,内容也太多,让复习课成为练习课,复习的时候没有注意到知识的综合运用,对于一个问题没有讲精讲透。如这堂复习课我准备了3题解直角三角形,又准备了3题构造直角三角形解决数学问题,最后还拿了一题生活应用题,感觉还是以做题目来达到复习的目的。
在分析题目时候还是以老师讲为主,没有给予学生足够的思考时间,拿到题目后,就帮助学生分析题目,让学生的思路朝自己预设的方向发展。而且对于这样的一个实际问题,拿出问题后就给学生画好图,这样降低了学生解题的难度,可是将一个实际问题转化为数学问题往往是学生的难点。此题应该让学生自己动手将题目中的已知条件转化为数学问题。
最后就是做为一个教九年级的老师,上课时
三角函数复习课教学反思
本学期我上了一堂锐角三角函数的复习课,按照课标锐角三角函数难度应该不是很大,自己在了解学生的学情情况下,从锐角三角函数的定义、特殊角三角函数值、解直角三角形的应用等几个方面来着手复习;为了巩固学生对特殊角的三角函数值掌握,给出了一个表格让学生回答30°,45°,60°角的三角函数值,其实可能还有很多学生都没有巩固,集体回答也可能就是走了一下形式罢了,如果当时采用作业的形式课前发给学生做练习,效果可能会截然不同。
上复习课时所设计的题目还是过多,内容也太多,让复习课成为练习课,复习的时候没有注意到知识的综合运用,对于一个问题没有讲精讲透。如这堂复习课我准备了3题解直角三角形,又准备了3题构造直角三角形解决数学问题,最后还拿了一题生活应用题,感觉还是以做题目来达到复习的目的。
在分析题目时候还是以老师讲为主,没有给予学生足够的思考时间,拿到题目后,就帮助学生分析题目,让学生的思路朝自己预设的方向发展。而且对于这样的一个实际问题,拿出问题后就给学生画好图,这样降低了学生解题的难度,可是将一个实际问题转化为数学问题往往是学生的难点。此题应该让学生自己动手将题目中的已知条件转化为数学问题。
最后就是做为一个教九年级的老师,上课时
三角函数的概念和同角三角函数
典例分析
【例1】 ⑴在0?与360?范围内,找出与下列各角终边相同的角,并判断它们是第几象限角:
①?120?;②640?;③?950?12?.
⑵分别写出与下列各角终边相同的角的集合S, 写出S中满足不等式?360?≤?≤720?的元素?: ①80?;②?51?;③367?34?.
【例2】 ⑴把67?30'化成弧度;
3⑵把πrad化成度.
5
9【例3】 ⑴把157?30?化成弧度;⑵把πrad化成度.
5
【例4】 将下列各角化为2kπ??(0≤??2π,k?Z)的形式,并判断其所在象限.
19π; 3(2)-315°; (3)-1485°.
(1)
【例5】 下面四个命题中正确的是()
A.第一象限的角必是锐角 C.终边相同的角必相等
B.锐角必是第一象限的角
D.第二象限的角必大于第一象限的角
【例6】 把下列各角写成k?360???(0≤??360?)的形式,并指出它们所在的象限或终边位置.
⑴?135?;⑵1110?;⑶?540?.
【例7】 已知角?的终边经过点P(?3,3),则与?终边相同的角的集合是
.
2π??k?Z? A.?xx?2kπ?,3??5π??k?Z? C.?xx?kπ?,
三角函数的概念和同角三角函数
典例分析
【例1】 ⑴在0?与360?范围内,找出与下列各角终边相同的角,并判断它们是第几象限角:
①?120?;②640?;③?950?12?.
⑵分别写出与下列各角终边相同的角的集合S, 写出S中满足不等式?360?≤?≤720?的元素?: ①80?;②?51?;③367?34?.
【例2】 ⑴把67?30'化成弧度;
3⑵把πrad化成度.
5
9【例3】 ⑴把157?30?化成弧度;⑵把πrad化成度.
5
【例4】 将下列各角化为2kπ??(0≤??2π,k?Z)的形式,并判断其所在象限.
19π; 3(2)-315°; (3)-1485°.
(1)
【例5】 下面四个命题中正确的是()
A.第一象限的角必是锐角 C.终边相同的角必相等
B.锐角必是第一象限的角
D.第二象限的角必大于第一象限的角
【例6】 把下列各角写成k?360???(0≤??360?)的形式,并指出它们所在的象限或终边位置.
⑴?135?;⑵1110?;⑶?540?.
【例7】 已知角?的终边经过点P(?3,3),则与?终边相同的角的集合是
.
2π??k?Z? A.?xx?2kπ?,3??5π??k?Z? C.?xx?kπ?,
三角函数与反三角函数单元教学设计
上海市上南中学单元教学设计
上南中学单元教学设计
主题单元标题 学科领域 (在 思想品德 音乐 化学 信息技术 劳动与技术 其他(请列出): 适用年级 所需时间 三角函数与反三角函数的复习 内打√ 表示主属学科,打+ 表示相关学科) 语文 美术 生物 科学 数学√ 外语 历史 社区服务 教师姓名 设计时间 符明媚 2011年9 月 28日 体育 物理 地理 社会实践 高三 10课时 主题学习概述(对主题内容进行简要的概述,并可附上相应的思维导图) 三角函数是中学数学的重要内容之一,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。它的基础主要是几何中的相似形和圆,研究方法主要是代数变形和图象分析,因此三角函数的研究已经初步把几何与代数联系起来了,本章所介绍的知识,既是解决生产实际问题的工具,又是学习中学后继内容和高等数学的基础。 主题学习目标(描述该主题学习所要达到的主要目标) 知识与技能: 1.借助单位圆中的三角函数线推导出诱导公式,能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性; 2.借助图
三角函数三角函数的诱导公式
三角函数的诱导公式(第一课时)
(一)复习提问,引入新课 思考 如何求 cos150 ?150 y
30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.
O
(二)新课讲授由三角函数的定义我们可以知道:
终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)
(公式一)
我们来研究角 与 的三角函数值之间的关系 y
因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos
M
O
P' (x, y)
sin( ) sin cos( ) cos tan( ) tan
(公式二)
思考 P '
三角函数与反三角函数单元教学设计
上海市上南中学单元教学设计
上南中学单元教学设计
主题单元标题 学科领域 (在 思想品德 音乐 化学 信息技术 劳动与技术 其他(请列出): 适用年级 所需时间 三角函数与反三角函数的复习 内打√ 表示主属学科,打+ 表示相关学科) 语文 美术 生物 科学 数学√ 外语 历史 社区服务 教师姓名 设计时间 符明媚 2011年9 月 28日 体育 物理 地理 社会实践 高三 10课时 主题学习概述(对主题内容进行简要的概述,并可附上相应的思维导图) 三角函数是中学数学的重要内容之一,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。它的基础主要是几何中的相似形和圆,研究方法主要是代数变形和图象分析,因此三角函数的研究已经初步把几何与代数联系起来了,本章所介绍的知识,既是解决生产实际问题的工具,又是学习中学后继内容和高等数学的基础。 主题学习目标(描述该主题学习所要达到的主要目标) 知识与技能: 1.借助单位圆中的三角函数线推导出诱导公式,能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性; 2.借助图
任意角三角函数(1)
侨中教研 关闭窗口>>>
任意角的三角函数(第一课时)
一. 教学目标设计 1、认知目标:
(1)掌握任意角的正弦、余弦、正切的定义;
(2)会作单位圆中的三角函数线;初步领会三角函数的定义域、值域、三角函数值的符号;
(3)会根据任意角的三角函数的定义求特殊角的三角函数值; (4)加深对函数一般概念的理解。 2、能力目标:
在学生原有知识的基础上,通过启发、引导学生发现和得出任意角的三角函数的定义及几何表示,培养学生观察、分析、探索、归纳、类比及解决问题的能力。 3、情感目标:
(1)通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神;
(2)在学习过程中通过相互讨论培养学生的团结协作精神; (3)以科学史激励学生,培养学生追求真理的精神。 二. 教学内容及重点、难点及关键的分析 教学重点 任意角的正弦、余弦、正切的定义
教学难点 理解任意角的正弦、余弦、正切的定义及单位圆中三角函数的概念。
教学关键 抓住初中所学的三角函数的定义方法,与新问题形成知识冲突,激发学生学习的兴趣;直观地