圆关于直线对称的圆的方程
“圆关于直线对称的圆的方程”相关的资料有哪些?“圆关于直线对称的圆的方程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆关于直线对称的圆的方程”相关范文大全或资料大全,欢迎大家分享。
直线和圆的方程知识汇总
力邦教育 学员专项辅导
直线和圆的方程
【方法点拨】
1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.
2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题. 3.熟练运用待定系数法求圆的方程.
4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.
5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.
6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.
第1课 直线的方程
【考点导读】
理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线
直线与圆的方程练习二
直线、圆方程 综合练习
1 直线与圆的方程练习二
一、选择题:
1、方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 ( )
A.(-∞,-2)
B.(32-,2)
C.(-2,0)
D.(-2,3
2) 2、圆(x -3)2+(y -4)2=1关于直线x +y =0对称的圆的方程为( )
A.(x +3)2+(y -4)2=1
B.(x +4)2+(y +3)2=1
C.(x +4)2+(y -3)2=1
D.(x -3)2+(y -4)2=1
3、直线x +2y +1=0被圆(x -2)2+(y -1)2=25所截得的弦长等于 ( ) A.52 B. 53 C. 54 D. 35
4、.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)113y x =-+ (B)1133y x =-+ (C)33y x =- (D)113
y x =+ 5、若直线3x +4y +k =0与圆x 2+y 2-6x +5=0相切,则k 的值等于( )
A.1或-19
B.10或-10
C.-1或-19
D.-1或19
6、(2006四川高考)已知两定点
2.2直线和圆的参数方程
导入新课1.在平面直角坐标系中,确定 一条直线的几何条件是什么呢?y 由直线的普通方程: y0 tan(x x0 )可知确定直线的几何条件是:
直线上的一个定点和该直线的倾斜角 根据直线的这个几何条件,想想该选择 怎样的参数去确定直线的参数方程呢?
教学目标知识与能力1.了解直线的参数方程的概念 2.培养同学们分析曲线的能力
过程与方法1.掌握用参数方程的思想方法来认识问题.
情感态度与价值观1.培养学生探究现实生活中大量存在的规律. 2.让学生意识到同一问题可有多种求解方法.
教学重难点重点1.根据问题的条件引进适当的参数, 写出直线的参数方程. 2.分析直线,圆和圆锥曲线的几何性质.
难点1.根据问题的条件引进适当的参数. 2.选择适当的参数写出直线的参数方程. 3.体会直线的参数方程的意义.
y 设直线的普通方程: y0 tan(x x0 ) sin ( x x0 ) 把它变成 y y0 cos 整理得 y y0 x x0 sin cos 令 y y x x0 0 t sin cos 即直线的参数方程为:
x x0 t cos ( 为参数) t y y0
直线与圆的方程练习二
直线、圆方程 综合练习
1 直线与圆的方程练习二
一、选择题:
1、方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 ( )
A.(-∞,-2)
B.(32-,2)
C.(-2,0)
D.(-2,3
2) 2、圆(x -3)2+(y -4)2=1关于直线x +y =0对称的圆的方程为( )
A.(x +3)2+(y -4)2=1
B.(x +4)2+(y +3)2=1
C.(x +4)2+(y -3)2=1
D.(x -3)2+(y -4)2=1
3、直线x +2y +1=0被圆(x -2)2+(y -1)2=25所截得的弦长等于 ( ) A.52 B. 53 C. 54 D. 35
4、.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)113y x =-+ (B)1133y x =-+ (C)33y x =- (D)113
y x =+ 5、若直线3x +4y +k =0与圆x 2+y 2-6x +5=0相切,则k 的值等于( )
A.1或-19
B.10或-10
C.-1或-19
D.-1或19
6、(2006四川高考)已知两定点
423直线与圆的方程的应用
423直线与圆的方程的应用
423直线与圆的方程的应用
例4。如图是某圆拱桥的一孔圆拱示意图.该圆 如图是某圆拱桥的一孔圆拱示意图. 拱跨度AB=20m,拱高OP=4m,在建造时每隔4 AB=20m,拱高OP=4m,在建造时每隔 拱跨度AB=20m,拱高OP=4m,在建造时每隔4 需要用一个支柱支撑,求支柱A m需要用一个支柱支撑,求支柱A2P2 的长度 (精确到0.01m). 精确到0.01m) 0.01m
423直线与圆的方程的应用
例4、图中是某圆拱桥的一孔圆拱的示意图, 图中是某圆拱桥的一孔圆拱的示意图, 该圆拱跨度AB 20m,拱高OP=4m AB= OP=4m, 该圆拱跨度AB=20m,拱高OP=4m,在建 造时每隔4m需用一个支柱支撑,求支柱A 4m需用一个支柱支撑 造时每隔4m需用一个支柱支撑,求支柱A2P2 的长度(精确到0.01 0.01) 的长度(精确到0.01) y
x
思考:(用坐标法) 思考:(用坐标法) :(用坐标法1.圆心和半径能直接求出吗? 1.圆心和半径能直接求出吗? 圆心和半径能直接求出吗 2.怎样求出圆的方程 怎样求出圆的方程? 2.怎样求出圆的方程? 3.怎样求出支柱 怎样求出支柱A 的长度? 3.怎样求出支柱A
直线与圆方程知识总结
直线与圆方程知识总结
一、坐标法 1.点和坐标
建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x,y)建立了一一对应的关系. 2.两点间的距离公式
设两点的坐标为P1(x1,y1),P2(x2,y2),则两点间的距离
|P1P2|=(x2?x1)2?(y2?y1)2
特殊位置的两点间的距离,可用坐标差的绝对值表示: (1)当x1=x2时(两点在y轴上或两点连线平行于y轴),则 |P1P2|=|y2-y1|
(2)当y1=y2时(两点在x轴上或两点连线平行于x轴),则 |P1P2|=|x2-x1|
3.线段的定比分点
(1)定义:设P点把有向线段P1P2分成P1P和PP2两部分,那么有向线段P1P和PP2的数量的比,就是P点分P1P2所成的比,通常用λ表示,即λ=P1P,点P叫做分线段P1P2为定比λ的定比分点.PP2
当P点内分P1P2时,λ>0;当P点外分P1P2时,λ<0.
(2)公式:分P1(x1,y2)和P2(x2,y2)连线所成的比为λ的分点坐标是
?x1?λx2x??1?λ?(λ≠?1)?y?λy2?y?1?1?λ?
特殊情况,当P是P1P2的中点时,λ=1,得线段P1P2的中点坐标
公式
x1?x2?x???2??y?y
高考试题(直线和圆的方程)
一、选择题
A(1,cos?),B(sin?,1),??(0,]2,则当△OAB的(江西)在△OAB中,O为坐标原点,
面积达最大值时,??(D)。
???? A.6 B.4 C.3 D.2
1(北京)“m=2”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的(C)
(A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件
22
(北京)从原点向圆 x+y-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为(B) (A)π (B)2π (C)4π (D)6π
22
(北京)从原点向圆 x+y-12y+27=0作两条切线,则这两条切线的夹角的大小为(B)
?2???? (A)6 (B)3 (C)2 (D)3
(重庆)圆(x?2)?y?5关于原点(0,0)对称的圆的方程为(A)
2222x?(y?2)?5 (x?2)?y?5 A. B.
C.(x?2)?(y?2)?5 D.x?(y?2)?5
222222(湖南)已知点P(x,y)在不等式组表示的平面区域上运
点与圆 圆与圆 直线与圆的位置关系 -
点与圆、圆与圆、直线与圆的位置关系
姓名: 日期: 指导老师:
知识点一:点与圆的位置关系
平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r?点P在⊙O______;
d=r?点P在⊙O______;d 1、 ⊙O的半径为5,O点到P点的距离为6,则点P( ) A. 在⊙O内 B. 在⊙O外 C. 在⊙O上 D. 不能确定 2、 若△ABC的外接圆的圆心在△ABC的内部,则△ABC是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无法确定 3、直角三角形的两条直角边分别是12cm、5cm,这个三角形的外接圆的半径是( ). A.5cm B.12cm C.13cm D.6.5cm 4、若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),你认为点P的位置为( ) A.在⊙A内 B.在⊙A上 C.在⊙A外 D.不能确定 5、Rt△ABC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,?那么斜边中点D与⊙O的位置关 系是( ) A.点D在⊙A外
点与圆、直线与圆、圆与圆的位置关系
点与圆、直线与圆、圆与圆的位置关系整合
教学目标 (一)教学知识点
1.进一步理解和掌握点与圆、直线与圆、圆与圆的位置关系.
2.不同位置关系所体现的数量关系,为以后与圆有关的计算、证明做铺垫. (二)能力训练要求
1.经历探索点与圆、直线与圆、圆与圆位置关系的过程,培养学生的探索能力. 2.通过观察得出“圆心到直线的距离d和半径r的数量关系”的对应与等价,从而实现位置关系与数量关系的相互转化.
(三)情感与价值观要求
通过探索点与圆、直线与圆、圆与圆位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
教学重点
经历探索点与圆、直线与圆、圆与圆位置关系的过程.理解点与圆、直线与圆、圆与圆的位置关系.掌握其对应与等价。
教学难点:经历探索点与圆、直线与圆、圆与圆位置关系的过程,归纳总结出三种位置关系下的对应与等价.
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?通过观看ppt课件,谈谈射击是如何计算成绩的?
[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等
直线和圆的方程例题与练习(6)
《直线和圆的方程》
一. 单选题:(每小题5分,共50分)
1、已知A(x1,y1)、B(x2,y2)两点的连线平行y轴,则|AB|=( )
A、|x1-x2| B、|y1-y2| C、 x2-x1 D、 y2-y1
2、方程(x-2)2+(y+1)2=1表示的曲线关于点T(-3,2)的对称曲线方程是:
( )
A、 (x+8)2+(y-5)2=1 B、(x-7)2+(y+4)2=2
C、 (x+3)2+(y-2)2=1 D、(x+4)2+(y+3)2=2
3、已知三点A(-2,-1)、B(x,2)、C(1,0)共线,则x为:
( )
A、7 B、-5 C、3 D、-1
4、方程x2+y2-x+y+m=0表示圆则m的取值范围是 ( ) A、 m≤2 B、 m<2 C、 m< D、 m ≤
5、过直线x+y-2=0和直线x-2y+1=0的交点,且垂直于第二直线的直线方程为 ( )