最值的教学视频乐乐课堂

“最值的教学视频乐乐课堂”相关的资料有哪些?“最值的教学视频乐乐课堂”相关的范文有哪些?怎么写?下面是小编为您精心整理的“最值的教学视频乐乐课堂”相关范文大全或资料大全,欢迎大家分享。

动态最值问题 - 圆内最值问题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

“一师一优课”

《动态最值问题——圆内最值问题》教学设计

西安爱知中学 郭晏铖

【学情分析】

在运动变化中求最值的问题灵活性较强,涉及的知识面较广,对学生思维能力要求较高,经常令学生束手无策。因此如何正确快速的求解成为学生学习中的难点。本节课前,学生已经学习了圆的基本知识,以及点和圆、直线和圆的位置关系。四班的同学在年级中属中等偏上水平,对于基本知识的学习掌握的较快,但缺乏应用的灵活性。与圆有关的最值问题可以变零散的知识为学生整体的认识,变重复枯燥的学习为新奇有趣的探索,在训练学生逻辑思维的同时,还能培养学生的探索能力 【教学方法】

对于圆中求最值问题,学生经常感到无从下手,处理此类题目首先要明确题目中运动的对象,然后就是根据按照题目要求作出运动过程中某一时刻的图象。现在学生普遍欠缺作图能力,因此我在题目的设置上也遵循由易到难的原则,从给出图形到简单作图再到复杂作图,让学生在这个过程中体会作图的重要性。

任何运动变化问题中总隐含着定量和不变关系,这也是解决这类问题的关键。在设计时我也注重设计情境,引导学生自己挖掘题目中的信息,找到这些关键点。从例1中的定量过渡到不变的位置关系再到不变的数量关系,剥茧抽丝,层层递进,从而体会探究的乐趣。

数列的最值问题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

课题: 数列中的最值问题

执 教:宋荷娟

班 级:高三(1)班 教学目标:

1.理解函数单调性与数列单调性的关系,掌握用单调性求数列最值的方法. 2.在解决问题的过程中,体会运用函数性质研究数列性质、求数列最值的方法要领.

3.在交流的过程中,分享多角度解决问题的成功经验,提高综合分析、解决问题的能力,提升数学素养.

教学重点:利用研究函数最值的方法解决数列中的最值问题. 教学难点:利用单调性解决数列中的最值问题.

教学过程:

一. 实例引入

数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用.

问题1:在一次人才招聘会上,A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资为2000元,以后每年月工资在上一年的基础上递增5%。设某人年初被A,B两家公司同时录用,试问:该人在A公司工作比在B公司工作的月工资最多时可高出多少元(精确到1元)?

【设计说明】让学生在实际情境中自觉领会和发现知识的形成过程,在思维碰撞中深刻体会其蕴含的数学思想和方法.

思路分析:由题意可知,此人在A、B两公司工作的第n年月

圆中的最值问题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

拔高专题 圆中的最值问题

一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的 对称 点,对称点与另一点的连线与直线L的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题

例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。

解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,

∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32.

【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条

平面几何的定值与最值问题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第二十三讲 平面几何的定值与最值问题

【趣题引路】

传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1.

这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢?

(1) (2)

解析 在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.

证明 如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR.

∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.

不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.

【知识延伸】

平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间

翻转课堂教学中微视频的运用-精品文档

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

翻转课堂教学中微视频的运用

随着高考的改革,化学学科的考查在基础知识掌握的层面上,更加侧重考查学生对化学学科本质的认识和化学学科思维的训练,以往单纯的习题训练方式很难达到这一要求。利用翻转课堂的教学模式,以微视频使用为主要手段,可以有效解决这一问题。我们以学生的认知能力和思维水平的提高为主要教学目标,根据学生的认知过程规律设计教学流程,以引发学生认知冲突、推动学生深度思考、突破学生认知障碍、形成学科认知体系为主要环节,借助现代信息技术手段,在完成完整的认知过程的基础上,使学生的学科思维得到本质的提升。 一、微视频是发挥翻转课堂优势的重要手段

翻转课堂是以现代信息技术为支撑的,以实现学生的个性化学习为目的的教学模式。只有以信息技术为支撑,才能真正地实现学生的个性化学习,而只有以实现学生个性化学习为目的的信息技术应用才能最大限度地发挥信息技术的优势[1]。 自1991年哈佛大学物理学教授埃里克?马祖尔(Eric Mazur)创立PI(Peer Instruction)教学法,到2000年美国的Maureen Lage,Glenn Platt和 Michael Treglia在迈阿密大学讲授利用万维网和多媒体让学生在家或者在

求函数最值的方法总结

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

求函数最值的常用以下方法:

1.函数单调性法

先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现.

1

例1 设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=________.

2【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a的值. 【解析】 ∵a>1,∴函数f(x)=logax在区间[a,2a]上是增函数,∴函数在区间[a,2a]上的最大值与最小值分1

别为loga2a,logaa=1.∴loga2=,a=4.故填4.

2

【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m,n]上的最值:若函数f(x)在[m,n]上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采

导数与函数的极值、最值

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

高三数学第一轮总复习 第三章第三节

知识要点

双基巩固

典型例题

易错辨析

提升训练

第三节

导数与函数的极值、最值

高三数学第一轮总复习 第三章第三节

知识要点

双基巩固

典型例题

易错辨析

提升训练

一、函数的极值1.定义:设函数f(x)在点x0附近有定义,如果对x0附近所有的点,

都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近所有的点,都有f(x)>f(x0),就说f(x0)是函数 2.求函数y=f(x)在某个区间上的极值的步骤:(1)求导数f′(x); (2)求方程f′(x)=0的根x0;(3)检查f′(x)在方程f′(x)=0的根x0的左右

f(x)的一个极小值,记作y极小值=f(x0).极大值和极小值统称为极值.

的符号;“左正右负” f(x)在x0处取极大值;“左负右正” f(x)在x0处取极小值(注:导数为零的点未必是极值点).

高三数学第一轮总复习 第三章第三节

知识要点

双基巩固

典型例题

易错辨析

提升训练

3.特别提醒:(1)x0是极值点的充要条件是x0点两侧导数异号,

而不仅是f′(x0)=0,f′(x0)=0是x0为极值点的必要而不充分条件.(2)给出函数极大(小)值的条件,一定要既考虑f′

线段之间的最值问题6

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

浅谈初中数学线段之和最值问题

近年来,在全国各地出现的中考试题的平面几何最值问题中,呈现出变化多、涉及面广、形式灵活的景象,对学生来讲是个难点;如果深入思考,可以发现:这类试题的命制都是立足于教材,解决途径都是运用转化的思想“化折为直”。本文中,笔者根据近几年的中考试题,结合浙教版教材和自己的教学体会,谈谈初中数学中求线段之和最值的求解策略。

1.直接应用定(公)理求最值

平面几何解决最短线路问题时常用的公理(定理):①两点之间线段最短.②三角形的两边之和大于第三边, 两边之差小于第三边(②是由①得出);③直线外一点到直线的所有线段中垂线段最短.

1.1应用两点之间线段最短

教材链接:七上7.3线段的长短作业题: D如图,A、B、C、D表示4个村庄.村民们准备合打一口水井,(1)略(2)你能给出一中使水井到各村庄的距离之和最小的方案吗?若能,请标出水井的位置,并说明理由. A 解题分析:

教材作业题中,因点D与点B、点A与点C是定点,当水井打在AC与BD的交点时,水井到各村庄的距离之和最小,直接利用“两点之间线段最短”的原理。

中考链接:(2009山东潍坊)已知边长为a的正三角形ABC(一象限),两顶点A,B分别在平面直角坐标系的x轴,y轴的

函数的极值和最值(讲解)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

函数的极值和最值

考纲要求】

1.掌握函数极值的定义。

2.了解函数的极值点的必要条件和充分条件.

3.会用导数求不超过三次的多项式函数的极大值和极小值

4.会求给定闭区间上函数的最值。

知识网络】

【考点梳理】

要点一、函数的极值

函数的极值的定义

一般地,设函数f (x) 在点x= x0及其附近有定义,

(1)若对于x0附近的所有点,都有f(x )f(x0),则f(x0)是函数f (x)的一个极大值,记作y极大值= f (x0) ;

(2 )若对x0附近的所有点,都有f (x ) f(x0),则f(x0)是函数f(x) 的一个极小值,记作y极小值= f (x0).

极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.

要点诠释:

求函数极值的的基本步骤:

①确定函数的定义域;

②求导数f (x) ;

③求方程f (x)=0的根;

④检查f'(x)在方程根左右的值的符号,如果左正右负,则 f(x)在这个根处取得极大值;如果左负右正,则 f(x)在这个根处取得极小值.(最好通过列表法)

要点二、函数的最值

1.函数的最大值与最小值定理

若函数y= f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上必有最大值和最小值;在开区间(a,b

最值问题精选试题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

小升初专题:最值问题精选试题 QQ:258155493 武汉三镇奥数辅导 15337245165

最值问题精选试题

1、不能写成两个不同奇合数的和的最大偶数是多少?

2、两个四位数,每一个的各位数字互不相同,如果它们的差是1999,那么它们的和的最大值是多少?

3、某学习小组有4名女生,2名男生。在一次考试中,他们做对试题的数量各不相同,最多对10题,最少对4题;女生中做对最多的比男生做对最少的多4题,男生中做对最多的比女生中做对的最少的多4题,则男生中做对最多的人对了几题?

4、20=10+10=5+5+10=1+2+3+4+5+5=?=1+1+?+1。这说明20可用多种形式写成若干个自然数之和。在每种写法中,将这种写法所包含的所有自然数相乘,问乘积的最大值是多少?

5、连续自然数1,2,?,N(N>50)。如果从中任取50个数,都能从中找到两个数,使这两个数的差等于7。问N的最大值是多少?

6、已知算术式abcd-efgh=1996,其中abcd和efgh均为四位数;a,b,c,d,e,f,g,h是0,1,2,3,?,9中的八个不同数字。问abcd与efgh之和的最大值与最小值差是多少?

7、将分别写有数码1、2、3、4