二次函数基础知识点
“二次函数基础知识点”相关的资料有哪些?“二次函数基础知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数基础知识点”相关范文大全或资料大全,欢迎大家分享。
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最
二次函数基础知识
二次函数基础知识教案
授益教育教师 学科 授课题目 教学重点 教学难点 教学体例 李东 数学 学生 年级 韩旭 时间 课次 教材名称 月 日( :-- : 第 期 ) 第 次课
一元二次函数基础知识 一元二次函数的概念,性质与图像 一元二次函数的性质与图像
教材全解
A.上节知识问答;B.精彩导学;C.教师精讲(重点知识,教授的方法,应注意的问题,解 决一类问题的规律) ;D.当堂监测(问答+笔试);E.课后作业;
A. 上节知识问答:提问一次函数的图像与性质,检查上节课的课后作业,并作简要的讲解巩固上节课所学知 上节知识问答 识.
B.精彩导学: 精彩导学:我们打篮球投篮的时候我们可以看到篮球的运动轨迹是一条弧线,当我们向远处投掷石子的时候我们也可 以看到石子的运动轨迹也是一条弧线.这些弧线我们称之为抛物线.今天我们就用一元二次函数来研究这些抛 物线.
C.教师精讲 教师精讲: 教师精讲(一)一元二次函数的定义 未知数的最高次数为二的函数我们称为一元二次函数. (二)一元二次函数的表达式 1,二次函数解析式的表示方法: (1)一般式: 对称轴: x = 顶点坐标( ① a >0 , 当 x = ┊y 取得最 ②a<0,当 x = y 取得最 值为 (三)
二次函数知识点详解口诀
二次函数知识点详解
知识点一、平面直角坐标系
1,平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当a?b时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征
1、各象限内点的坐标的特征
点P(x,y)在第一象限?x?0,y?0
点P(x,y)在第二象限?x?0,y?0 点P(x,y)在第三象限?x?0,y?0 点P(x,y)在第四象限?x?0,y?0
2、坐标轴上的点的特征
点P(x,y)在x轴上?y?0,x为任意实数 点P(x,y)在y轴上?x?0,y为任意实数
点P(x,
浙教版二次函数知识点
浙教版二次函数知识点
浙教版二次函数知识点
二次函数在初中数学中占有重要位置,特别是在中考的最后一道大题,算是数学大题中的压轴题,接下来为你整理了浙教版二次函数知识点,一起来看看吧。
浙教版二次函数知识点I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和B(x₂,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b)/4a x₁,x₂=(-b±√b-4ac)
《二次函数》知识点总结精品
初三精品资料 付国教案
《二次函数》知识点总结
一、二次函数的概念
1、定义:一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x的二次函数.
2、注意点:
(1)二次函数是关于自变量x的二次式,二次项系数a必须为非零实数,即a≠0,而
b、c为任意实数。 (2)当b=c=0时,二次函数y?ax2是最简单的二次函数。
(3)二次函数y?ax2?bx?c(a,b,c是常数,a?0)自变量的取值为全体实数
(ax?bx?c为整式)
3、三种函数解析式:
(1)一般式: y=ax2+bx+c(a≠0),
2bb4ac?b2, 对称轴:直线x=? 顶点坐标:( ? )
2a2a4a(2)顶点式:y?a?x?h??k(a≠0),
2 对称轴:直线x=h 顶点坐标为(h,k )
(3)交点式:y=a(x-x1)(x-x2)(a≠0),
对称轴:直线x=
x1?x2 2 (其中x1、x2是二次函数与x
二次函数基础知识点归纳及相关联系 高冬
二次函数基础知识点归纳及相关题型
兴城市三道沟中学 高冬
一、定义:一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做
x的二次函数.
当二次项系数含有字母求字母值时要注意:(1)若函数是二次函数,要强调二次项系数不等于0;(2)若该函数类型不明确,要分两种情况讨论,一次函数或二次函数。
二、抛物线y?ax2?bx?c中,a,b,c符号判定。
a看开口方向;c看图像与y轴的交点位置;b看对称轴和a,“左同右异。”
习题:
1.二次函数y?ax2?bx?c的图象如图所示,则一次函数y?bx?a的 图象不经过
y O
x
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.函数y?ax?b和y?ax2?bx?c在同一直角坐标系内的图象大致是( )
3.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是 A.ab<0 B.ac<0 C.当x<2时,函数值随x的增大而增大;当x>2时,函数值随x的增大而减小 D.二次函数y=ax2+bx+c的图象与x轴的交点的横坐标就是方程ax2+bx+c=0的根。
三、求抛物线的顶点、对称轴的方
二次函数知识点总结和题型总结
二次函数知识点总结和题型总结
一、二次函数概念:
2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2y?ax?bx?c的结构特征: 2. 二次函数
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题:
例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。
练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 2开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,0? y轴 y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,0? y轴 y随x的增大而增大;x?0时,y有最大值0.
二次函数知识点总结和题型总结
二次函数知识点总结和题型总结
一、二次函数概念:
2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2y?ax?bx?c的结构特征: 2. 二次函数
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题:
例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。
练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 2开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,0? y轴 y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,0? y轴 y随x的增大而增大;x?0时,y有最大值0.