小学三年级三角形的周长题目
“小学三年级三角形的周长题目”相关的资料有哪些?“小学三年级三角形的周长题目”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学三年级三角形的周长题目”相关范文大全或资料大全,欢迎大家分享。
小学三年级经典三角形题目
三角形分类 1、把三角形按照不同的标准分类,并说明分类依据。 (1)按角分:直角三角形、锐角三角形、钝角三角形。
① 三个角都是锐角的三角形是锐角三角形。② 有一个角是直角的三角形是直角三角形。③ 有一个角是钝角的三角形是钝角三角形。 (2)按边分:等腰三角形、等边三角形、任意三角形。 ① 有两条边相等的三角形是等腰三角形。 ② 三条边都相等的三角形是等边三角形。
2、通过分类发现:等边三角形是特殊的等腰三角形。
三角形内角和、三角形边的关系
1、 任意一个三角形内角和等于180度。 2、 三角形任意两边之和大于第三边。
3、 能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。 4、四边形的内角和是360°
5、用2个相同的三角形可以拼成一个平行四边形。
6、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
7、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
四边形的分类
1、 由四条线段围成的封闭图形叫作四边形。四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。
2、
相似三角形的周长与面积
备课时间: 上课时间: 课型:新课 主备人:牛万英 审批人: 授课班级:
课题: 27.2.3 相似三角形的周长与面积 学习目标:
理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方,并能用来解决简单的问题。
重点:理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难点:探索相似多边形周长的比等于相似比、面积比等于相似比的平方。 知识回顾
相似三角形有哪些性质? 新知探究
1.如果两个三角形相似,
它们的周长之间有什么关系?两个相似多边形呢? 2.三角形中,除了角和边外,还有三种主要线段?
归纳:相似三角形的对应角平分线之比,中线之比,高线的比都等于相似比。分
3.探究:相似三角形的面积的比。(独立完成证明,5分钟) 如图ΔABC∽ΔA/B/C/ ,相似比为k,它们的面积比是多少?
A /
A 结论:1.B 相似三角形面积的比等于相似比的平方
D C /
D 2.相似多边形面积的比等于相似比的平方.
归纳:相似三角形(多边形)的性质:
1.相似三角形对应的中线、高线、角平分线的比等于相似比. 2.相
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
初中数学三角形(二)特殊三角形
三角形(二)——特殊三角形
【等腰三角形】
1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。
3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。
姓 名: 【典型例题】
例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形
第12届(2001年)初二培训
例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )
第14届(2003年)初二培训
图2
例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。
图1
(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°
第10届(1999年)初二第
人教版小学三角形教案
小学四年级三角形教案_人教版小学三角形教案
教学内容:
义务教育课程标准实验教科书xx版小学数学四年级下册第42~46页
教学目标:
1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出“三角形内角和是180°”的结论,会应用这一规律进行计算。
2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。
教学过程:
一、创设情境,导入新课
1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!
播放课件
详细内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的。”一个小的锐角三角形很委屈的样子说:“是这样吗?”(它们在争论谁的内角和大。)
你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。
二、自主探究、发现规律
1、探究三角形内角和的特点
(1)量一量
师:你认为怎样能知道三角形的内角和?
生:把三角形的三个内角分别量
三角形的分类
篇一:《三角形的分类》习题
《三角形的分类》习题
一、下面的说法,对的打“√”,错的打“×”。
1.有一个是锐角的三角形是锐角三角形。( )
2.直角三角形只有两个锐角。( )
3.如果一个三角形中最大的角小于90°,那么这个三角形一定是锐角三角形。( )
4.一个三角形不是锐角三角形,就是钝角三角形。( )
5.所有等边三角形都是等腰三角形而且都是锐角三角形。 ( )
6.由三条直线围成的图形叫做三角形。( )
7.在一个三角形中,不可能有两个或两个以上的直角。( )
8.在同一个三角形中,只能有一个角是钝角。( )
9.一个三角形中,至少有两个角是钝角。( )
10.两个角相等的三角形是等腰三角形。( )
11.等边三角形一定是锐角三角形。( )
12.三角形中最多有一个直角。( )
二、填空题。
1.三角形按角分类可分成( )三角形、( )三角形和( )三角形。
2.一个三角形中最大的角是锐角,这个三角形是( )三角形。
3.一个三角形中最大的角是120°,这个三角形是( )三角形。
4.你能给三角形分类吗:
三、选择。
1.三条边相等的三角形是( )三角形。
A.不等边B.等腰 C.等边
2.等腰三角形有( )条边相等。
A.1 B.2C.3
3.任何一个三角形至少有( )个锐角
三角形习题
三角形 综合习题
一、选择题
1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )
A.三角形内部 C.三角形外部
B.三角形的一边上 D.三角形的某个顶点上
2.下列长度的各组线段中,能组成三角形的是 ( ) A.4、5、6 C.5、7、12
B.6、8、15 D.3、9、13
3.在锐角三角形中,最大角α的取值范围是 ( ) A.0°<α<90° C.60°<α<180°
4.下列判断正确的是 ( )
A.有两边和其中一边的对角对应相等的两个三角形全等 B.有两边对应相等,且有一角为30°的两个等腰三角形全等 C.有一角和一条边对应相等的两个直角三角形全等 D.有两角和一边对应相等的两个三角形全等
5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( ) A.x<6 C.0<x<12
B.6<x<12 D.x>12
B.60°<α<90° D.60°≤α<90°
6.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三
角形 ( )
A.一定有一个内角为45° B.一定有一个内角为60° C.一定是直角三角形 D.一定是钝角三角形
7.三角
三角形的心
三角形的重心是三角形三条中线的交点。
三角形的三条中线必交于一点
已知:△ABC的两条中线AD、CF相交于点O,连结并延长BO,交AC于点E。
三角形的三条中线必交于一点
求证:AE=CE
证明:延长OE到点G,使OG=OB
∵OG=OB,∴点O是BG的中点 又∵点D是BC的中点∴OD是△BGC的一条中位线 ∴AD∥CG
∵点O是BG的中点,点F是AB的中点 ∴OF是△BGA的一条中位线 ∴CF∥AG
∵AD∥CG,CF∥AG,∴四边形AOCG是平行四边形 ∴AC、OG互相平分,∴AE=CE
三角形的重心的性质
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:
(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
6.重心是三角形内到三边距离之积最大的点。
编辑本段二、三角形的外心
三角形的外心是三角形三条垂直平分线的交点(或
全等三角形
第十一章:全等三角形导学案
黑龙江省依兰县第一中学
11.1《全等三角形》导学案
【使用说明与学法指导】
1. 课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。 2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。 4.人人参与,合作学习,人人都有收获,人人都有进步。 5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:
1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。 2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。 三、学习过程
《课前预习案》
(一)、自主预习课本2—3页内容,回答下列问题:
1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做
初三年级数学相似三角形测试卷
初三年级数学相似三角形测试卷
一.选择题(4′×6=24′)
ac3a?c??,则的值是( ). bd5b?d8335(A); (B); (C); (D).
55881.已知:
2.已知:如图,已知D是△ABC中的边AB上的一点,△ACD∽△ABC,AD=4,BD=5,那么这两个相似三角形的相似比是( ).
(A)4∶5; (B)4∶9; (C)2∶3; (D)5∶9. A A
A
D F E
C
(第2题) (第5题) (第6题)
3.在△ABC中, 点D、E分别在AB、AC的反向延长线上,DE∥BC,那么下列比例式中正确是( ).
(A)DE∶BC=AE∶AB; (B)DE∶BC=AC∶AE; (C)DE∶BC=AD∶AB; (D)AE∶AD =AB∶AC. 4.下列叙述正确的是( ).
(A)有两边对应成比例,且有一个角对应相等的两个三角形相似; (B)任意两个等腰三角形都相似; (C)任意两个