弧长及扇形的面积
“弧长及扇形的面积”相关的资料有哪些?“弧长及扇形的面积”相关的范文有哪些?怎么写?下面是小编为您精心整理的“弧长及扇形的面积”相关范文大全或资料大全,欢迎大家分享。
弧长与扇形面积说课稿
弧长和扇形面积说课稿
尊敬的各位评委,老师:大家好!
我是xx号考生,今天我说课的题目是《弧长和扇形面积》,内容是选自人教版初中数学九年级上册第24章第4节。下面我将从教材、教法学法、教学过程,板书设计等几个方面来加以说明。
一、教材的地位和作用
本节是初中数学的重要内容之一,这是学生已经学习了圆的周长及面积,对弧长和面积已经有了初步的认识的基础上,对圆知识的进一步深入和拓展,在今后的解题及几何证明中,将起到重要作用。 二、教学目标、重点难点分析
在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:
知识目标:了解扇形的概念,理解n0的圆心角所对的弧长、扇形面积以及圆锥面积的计算公式并熟练掌握。
技能目标:通过本节课的学习,培养学生 观察分析、类比归纳的探究能力,加深对数形结合、从特殊到一般等数学思想的认识。
情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
通过上面对教材内容的分析以及教学目标的设定,我确定本节课的教学重难点如下:
1
重点:由圆
弧长和扇形面积说课稿
《弧长和扇形面积》第一课时说课稿
龙门县实验学校 梁艳芬
尊敬的评委、领导、老师:
大家好!我要说的课题是《弧长和扇形面积》第一课时。根据新课标理念,我将从教材分析、教法设计、学法指导、教学过程和效果预测五个方面加以说明。
先看教材分析: 一、教材分析 1.教材地位和作用
本节内容选自义务教育课程标准实验教科书、人教版九年级数学上册第24章第4节第110-111的内容,它是圆周长与面积的拓展和延伸,也是学习圆锥侧面展开图的基础,且对动态问题的学习将起到重要的铺垫作用。 2.学情分析
由于我班的数学基本功相对较薄弱,接受新知识的能力较困难,特别是逻辑思维论证有欠严谨,遗忘旧知识明显。因此我把本课内容重组为先复习圆周长与面积,接着认识扇形,再推导公式,最后是巩固公式。暂时避开求阴影部分的面积,让学生重新树立学好数学的信心。 3.重难点
我结合新课标要求,以学生发展为核心的理念下确定了本课的重点是弧长和扇形面积公式的推导。由于公式刚接触,学生对公式的选择还不够灵活,导致计算量超大,所以本课的难点确定为弧长和扇形面积公式的灵活选用。 4.教学目标
根据新课程标准,教学目标应包括三维。因此,本课的三维
弧长和扇形面积导学案
主备人:唐海霞 审核人:权健 叶小凤 班级: 姓名:
《§24.3.1弧长和扇形面积》(第一课时弧长)总第3课时
学习目标:
1.学习探索弧长的计算公式 2.会用弧长计算公式解决实际问题
学习重点:弧长公式的探索和应用 学习难点:弧长公式的应用
一、导学探究(由教材P110问题引入)
1.圆周长公式为C= ,圆的周长可以看着是 °的圆心角所对的弧长。由此可见,1°圆心角所对弧长为l= ,n°圆心角所对弧长为 . 2.归纳弧长公式l= .
二、精讲多动
例2:如图△ABC是正△,曲线CDEF…叫做正三角形的渐开线,其
OACDE B?,DE?,EF?…的圆心依次按A、B、C循环,它们依次相连接,如CD果AB=1,那么曲线CDEF的长是多少?
B C A F
练一练:
1.弧长相等的两段弧是等弧吗?
D 2.有一段弯道是圆弧形的,道长是12m,弧所对圆心角是81°,求这段圆弧的半径R. 3.如图正△ABC的边长为a,分别以A、B、C为圆心,以中阴影部分面积.
a为半径的圆相切于点D,E,F,求圆2AFB4.若一个扇形的弧长是12?,
弧长和扇形面积教学反思
篇一:《弧长及扇形的面积》第一课时的教学反思
《弧长及扇形的面积》第一课时的教学反思
作为教师怎么处理教材为好?怎么引入新课?怎么展开课堂教学?等等一系列问题,人人都在不断的思考中追求完美,努力求得效果最好。
我教弧长及扇形的面积的第一课时,主要是导出弧长及扇形的面积公式,并进行初步运用,让学生经历弧长及扇形面积公式推导过程,提高数学思考、分析和探究活动能力,体会公式中的变量与不变量,体会其中蕴涵的数学思想。
本节课本我从传送带的一个转动轮轮转一周入手,先思考转动轮转一周,传送带上的物品A被传送多少厘米?再由转动轮转1°,传送带上的物品A被传送多少厘米,归纳得出转动轮转n°,传送带上的物品A被传送多少厘米,即360°的圆心角对应圆周长2πR,那
2πRπR=,n°的圆心角对应的弧长应360180
πRnπR=为1°的圆心角对应的弧长的n倍,即n×.学生带着疑180180
nπR问,进行分组讨论归纳弧长公式l=,老师并引导学生共同证明l180
nπR=:体现了数学由特殊到一般的教学过程,渗透了转化的思想。180么1°的圆心角对应的弧长为
接着分析公式中的变量与常量,揭示了弧长与半径、及所对圆心角的关系,为推导扇形面积公式做好铺垫,体现了类比的教学思想。
这节课基本
《弧长及扇形的面积》教学设计说明
《弧长及扇形的面积》教学设计
威海经区新都中学敬敬
【教学容】
鲁教版九年级下册第五章《圆》第九节《弧长及扇形面积》P53—P56.
【课标分析】
《课标》要求:会计算圆的弧长、扇形的面积。课标对本节的要会计算,对于弧长和扇形面积公式要由学生独立分析得出,帮助学生更好地理解公式。
《课标》还要求:通过义务教育阶段的数学学习,学生能:
1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事的科学态度。
因此,本节课以制作圆锥形圣诞帽为主线,引导学生思考:
如何做扇形?弧长与圆心角、半径有什么关系?
如何做圆锥帽?至少需要准备多少纸?扇形面积如何求?
如何进行装饰?求弓形面积
让学生感悟数学来源于生活,并服务于生活。充分发挥学生的主体地位,让学生积极主动地思考。
【教材分析】
本节课是鲁教版九年级下册第五章《圆》的第九节《弧长及扇形面积》容。在学生对圆有了一定的认识后,再进一步研究弧长及扇形面
20141130弧长和扇形面积1
YSYZ
MIDDLE SCHOOL
知识回顾
圆的周长公式
C=2πR圆的面积公式2 S=πR
问题1:
如图是圆弧形状的铁轨示意图,其 中铁轨的半径为100米,圆心角为 90°.你能求出这段铁轨的长度吗?解:∵圆心角900 1 ∴铁轨长度是圆周长的 4 则铁轨长是
1 2 100 50 米 4
图 23.3.1
问题探究:
上面求的是圆心角900所对的弧长,请同 学们计算半径为r圆心角分别为180°、 90°、45°、1°所对的弧长。思考:
请同学们计算半径为r,若圆心角为n°, 如何计算它所对的弧长呢?
图 23.3.2
若设⊙O半径为R, n°的圆心角 所对的弧长为 l ,则
n R l 180
A
B
n°
140°圆心角所对的弧 长是多少? 140 R 7 R 180 9
O
例1
制造弯形管道时,经常要先按中 心线计算“展直长度”(图中虚线 的长度),再下料,试计算如图所 示管道的展直长度L(单位:mm,精 确到1mm)A B100° R=900mm 700mm 700mm
C
如何求
AB
长?
D
例1700mm
A100° R=900mm
B700mm
弧长和扇形面积导学案
主备人:唐海霞 审核人:权健 叶小凤 班级: 姓名:
《§24.3.1弧长和扇形面积》(第一课时弧长)总第3课时
学习目标:
1.学习探索弧长的计算公式 2.会用弧长计算公式解决实际问题
学习重点:弧长公式的探索和应用 学习难点:弧长公式的应用
一、导学探究(由教材P110问题引入)
1.圆周长公式为C= ,圆的周长可以看着是 °的圆心角所对的弧长。由此可见,1°圆心角所对弧长为l= ,n°圆心角所对弧长为 . 2.归纳弧长公式l= .
二、精讲多动
例2:如图△ABC是正△,曲线CDEF…叫做正三角形的渐开线,其
OACDE B?,DE?,EF?…的圆心依次按A、B、C循环,它们依次相连接,如CD果AB=1,那么曲线CDEF的长是多少?
B C A F
练一练:
1.弧长相等的两段弧是等弧吗?
D 2.有一段弯道是圆弧形的,道长是12m,弧所对圆心角是81°,求这段圆弧的半径R. 3.如图正△ABC的边长为a,分别以A、B、C为圆心,以中阴影部分面积.
a为半径的圆相切于点D,E,F,求圆2AFB4.若一个扇形的弧长是12?,
24.4 弧长和扇形面积导学案
陇川县民族中学
授课教师:孙继宽
猜一猜:
有风不动无风动, 不动无风动有风.(打一夏季常用纸制生活用品)
A n°o
B
A 60°o9
B
第二十四章 圆
问题1: 24.4 已知圆的半径是 9cm,那么60 的 弧长和扇形面积 圆心角所对的弧长是多少厘米?
第1课时
圆心角 n 圆心角度数 周角 360
弧长 l 圆周长 C
弧长 l
B O
A
180 °
1 2
1 2
1 2 R 2
B
A O
圆心角是周角的几分之几,那 1 1 1 2 R 90 ° 么弧长就是圆周长的几分之几。 4 4 4
BA
60 °O
1 6
1 6
1 2 R 6
圆心角 n 圆心角度数 周角 360 B A
弧长 l 圆周长 C
弧长 l
30 °O
1 12 1 360
1 12 1 360
1 2 R 12
B A
O
1°
1 2 R 360
B A
O
n°
n nn n 2 R l 360 360 R 360
180
问题1: 已知圆的半径是9cm,那么60 的 圆心角所对的弧长是多少厘米?A B 60° o9
解:由弧
最新初中数学24.4 弧长和扇形面积6 第1课时 弧长和扇形面积
24.4 弧长和扇形面积 第1课时 弧长和扇形面积
1.了解扇形的概念,复习圆的周长、圆的面积公式.
nπRnπR21
2.探索n°的圆心角所对的弧长l=、扇形面积S=和S=lR的计算公式,并应用这些公式解决相关
1803602问题.
阅读教材第111至113页,完成下列知识探究.
知识探究
1.在半径为R的圆中,1°的圆心角所对的弧长是________,n°的圆心角所对的弧长是________. 2.在半径为R的圆中,1°的圆心角所对应的扇形面积是________,n°的圆心角所对应的扇形面积是________. 3.半径为R,弧长为l的扇形面积S=________. 自学反馈
︵
1.已知⊙O的半径OA=6,∠AOB=90°,则∠AOB所对的弧长AB的长是________. 2.一个扇形所在圆的半径为3 cm,扇形的圆心角为120°,则扇形的面积为________. 3.在一个圆中,如果60°的圆心角所对的弧长是6π cm,那么这个圆的半径r=________. 4.已知扇形的半径为3,圆心角为60°,那么这个扇形的面积等于________.
活动1 小组讨论
例1 在一个周长为180 cm的圆中,长度为60 cm的弧所对的圆心角为120度.
24.4.2弧长及扇形面积习题.ppt2
热身赛1、已知圆弧的半径为50厘米,圆心角为 60°,求此圆弧的长度. 50
3 2、填空题: (1)如果扇形的圆心角是230°,那么这 个扇形的面积等于这个扇形所在圆的面 23 积的_______________; 2 36 (2)扇形的面积是它所在圆的面积的 3 , 240 这个扇形的圆心角的度数_________°. (3)扇形的面积是S,它的半径是r,这 2S 个扇形的弧长是_____________.r
试试身手
1、已知扇形的圆心角为120°,半径为2, 4 . 则这个扇形的面积S扇=_ 则这个扇形的半径R=____. 1 3、已知半径为3的扇形,面积为2π, 80° 则它的圆心角的度数=____. 4、已知扇形的圆心角为270°,弧长 48 π 为12 π 。则扇形的面积为______
5 3 2、已知扇形面积为 12,圆心角为150°,
典型例题1 如图,正三角形ABC的边长为a,分别a 以A、B、C为圆心, 为半径的圆两两相 2
切于点O1、O2、O3,求O⌒2、O⌒ 3、O⌒ 1围 1O 2O 3O 成的图形的面积S(图中阴影部分).
2
当堂巩固 0, 5.如图