高中数学推理与证明知识点
“高中数学推理与证明知识点”相关的资料有哪些?“高中数学推理与证明知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学推理与证明知识点”相关范文大全或资料大全,欢迎大家分享。
2018-2019年高中数学知识点《推理与证明、数系的扩充与复数》《
2018-2019年高中数学知识点《推理与证明、数系的扩充与复数》《复数》《复数三角形式与运算》精选专题试卷【5】
含答案考点及解析
班级:___________ 姓名:___________ 分数:___________
题号 一 二 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
评卷人 三 总分 得 分 一、选择题
1.复数在复平面上对应的点位于 ( )
B.第二象限
C.第三象限
D.第四象限
A.第一象限 【答案】B 【解析】
试题分析:运用复数的除法运算法则计算坐标
,所以点位于第二象限.
,得出实部和虚部,即得到点的
考点:复数的运算. 2.若复数A.第一象限 【答案】D 【解析】 试题分析:复数
对应点为(3,-1),在第四象限,故选D.
,则在复平面内对应的点位于 ( )
B.第二象限
C.第三象限
D.第四象限
考点:本题主要考查复数的几何意义。
点评:简单题,复数a+bi(a,b为实数)对应点为(a,b)。 3.凸n边形有A.【答案】C
条对角线,则凸n+1边形的对角线的条数
等于( )
B.
C.
D.
【解析】解:因为凸n边形有条对角线
高中数学知识点总结
中国特级教师高考复习方法指导〈数学复习版〉
高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 如:集合A??x|y?lgx?,B??y|y?lgx?,C??(x,y)|y?lgx?,A、B、C 中元素各表示什么?
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 如:集合A??x|x2?2x?3?0?,B??x|ax?1? 若B?A,则实数a的值构成的集合为 (答:???1,0,1??3??) 3. 注意下列性质: (1)集合?a1,a2,??,an?的所有子集的个数是2n; (2)若A?B?A?B?A,A?B?B; (3)德摩根定律: CU?A?B???CUA???CUB?,CU?A?B???CUA???CUB? 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于x的不等式ax?5x2?a?0的解集为M,若3?M且5?M,求实数a 的取值范围。 (∵3?M,∴a·3?532?a?
高中数学知识点总结
高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
如:集合A??x|y?lgx?,B??y|y?lgx?,C??(x,y)|y?lgx?,A、B、C中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 如:集合A??x|x2?2x?3?0?,B??x|ax?1? 若B?A,则实数a的值构成的集合为 3. 注意下列性质:
(1)集合a1,a2,??,an的所有子集的个数是2n; (2)若A?B?A?B?A,A?B?B; (3)德摩根定律:
1? (答:???1,0,?)?3???CU?A?B???CUA???CUB?,CU?A?B???CUA???CUB?
ax?5?0的解集为M,若3?M且5?M,求实数a的取值范围。 x2?a 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于x的不等式(∵3?M,∴
a·3?5?032?aa·5?5?025?a?5??a??1,???9,25?
高中数学选修知识点总结
数学选修2-1
第一章:命题与逻辑结构 知识点:
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。若原命题为“若p,则q”,它的逆命题为“若q,则p”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若 p,则 q”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若p,则q”,则它的否命题为“若 q,则 p”。
6、四种命题的真假性:
原命题 逆命题 真 真 真 假 假 真 假 假
四种命题的真假性之间的关系:
否命题 真 假 真 假
逆否命题
真 真 假 假
1 两个命题互为逆否命题,它们有相同的真假性
高中数学必修5知识点
篇一:高中数学必修5知识点总结(精品)
必修5知识点总结
1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外接圆的半径,则有
abc
???2R. sin?sin?sinC
2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;
abc,sin??,sinC?;③a:b:c?sin?:sin?:sinC; 2R2R2Ra?b?cabc
???④.
sin??sin??sinCsin?sin?sinC
②sin??
(正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。)
⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况) 如:在三角形ABC中,已知a、b、A(A为锐角)求B。具体的做法是:数形结合思想 画出图:法一:把a扰着C点旋转,看所得轨迹以AD有无交点:
当无交点则B无解、 当有一个交点则B有一解、 当有两个交点则B有两个解。 法二:是算出CD=bsinA,看a的情况: 当a<bsinA,则B无解
当bsinA<a≤b,则B有两解 当a=bsinA或a>b时,B有一解
注:当A为钝角或是直角时以此类推既可。
高中数学高考知识点总结
高一数学必修1知识网络
集合
?()元素与集合的关系:属于(?)和不属于(?)?1??(?集合与元素?2)集合中元素的特性:确定性、互异性、无序性??(?3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集??4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法(?????子集:若x?A ?x?B,则A?B,即A是B的子集。?????1、若集合A中有n个元素,则集合A的子集有2n个,真子集有(2n-1)个。????????2、任何一个集合是它本身的子集,即 A?A???? 注??关系???3、对于集合A,B,C,如果A?B,且B?C,那么A?C.????4、空集是任何集合的(真)子集。??????真子集:若A?B且A?B?(即至少存在x0?B但x0?A),则A是B的真子集。集合???????集合相等:A?B且A?B ?A?B?????集合与集合??定义:A?B??x/x?A且x?B??交集???????性质:A?A?A,A????,A?B?B?A,A?B?A,A?B?B,A?B?A?B?A???????定义:A?B??x/x?A或x?B????并集???????性质:A?A?A,A???A,A
高中数学高考知识点总结
[全国通用]高中数学高考知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
如:集合A??x|y?lgx?,B??y|y?lgx?,C??(x,y)|y?lgx?,A、B、C中
元素各表示什么?
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。
如:集合A??x|x
2?2x?3?0,B??x|ax?1??
若B?A,则实数a的值构成的集合为1??(答:??1,0,?)3??
3. 注意下列性质:
(1)集合?a,a,??,a?的所有子集的个数是2;
n12n
(2)若A?B?A?B?A,A?B?B;
(3)德摩根定律:
C?A?B???CA???CB?,C?A?B???CA???CB?
UUUUUU 4. 你会用补集思想解决问题吗?(排除法、间接法)
如:已知关于x的不等式ax?5?0的解集为M,若3?M且5?M,求实数ax2?a
的取值范围。
(∵3?M,∴
∵5?M,∴a·3?5?023?aa·5?
高中数学文科知识点
集合与简易逻辑
知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
3 ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)
①将不等式化为a0(x-x1)(x-x2)…(x-xm)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
x1x2x3xm-3-xm-2xm-1+-xm+x
(自右向左正负相间)
则不等式a0xn?a1xn?1?a2xn?2???an?0(?0)(a0?0)的解可以根据各区间的符号确定.
3.含绝对值不等式的解法
(1)公式法:ax?b?c,与ax?b?c(c?0)型的不等式的解法. (2)定义法:用“零点分区间法
高中数学重点必修知识点
高中数学
高中数学重点必修知识点解读
必修一
1集合间交、并、补的运算(包含给出数字的集合,不等式的集合)
2函数的定义域:分母,偶次根式,对数的真数
3分段函数:知自变量求函数值、知函数值求自变量
4函数的单调性的证明
5函数奇偶性的判断(记住几个特殊函数的奇偶性)
6指数和对数的运算(熟练运算性质)
7指数函数,对数函数的图像和性质(对图像和单调性的区分,应用特别注意)
8幂函数的定义
9方程根和函数零点的求解以及判断零点在那个区间,并和二分法联系起来
10函数的应用(注重二次函数,均值函数,三角函数这三个)
必修二
1三视图的认识(由三视图求相应几何体的体积,表面积等)
2线面平行,面面平行的判定(证明题)
3线面垂直,面面垂直的判定(证明题)
4异面直线所成角,直线和平面所成角,二面角的求解
5各种判定定理,性质定理,性质的符号语言出现的命题判断
6直线的倾斜角和斜率(一是角求斜率,二是由斜率求角)
7求直线的方程(一般是两个方向:一是知点和斜率,而是知两点。但也不排除已知其它条件求直线方程,如与截距相关联;与圆相联系。应对五种直线形式非常熟悉)
8两直线平行的判定(一是斜率法,二是系数法。包括求平行直线,或已知两直线平行求相关系数的值)
9两直线垂直的判定(一是斜率法,二是系
高中数学复习知识点汇总
艺体生文化教学校本教材
高一数学必修1 .............................................................................................................................................................................. 1
集合: ..................................................................................................................................................................................... 1 函数 .............................................................................................................................................