数值计算方法思考题答案
“数值计算方法思考题答案”相关的资料有哪些?“数值计算方法思考题答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数值计算方法思考题答案”相关范文大全或资料大全,欢迎大家分享。
数值计算方法思考题
数值计算方法思考题
第一章 预篇
1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣?
3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。
4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?
5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确:
(1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。
(5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。
(8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题
ax2 + bx + c = 0.
下面的公式是熟知的
?b?b2?4acx?.
2a
与之等价地有
x?
对于
2c?b?b?4ac2.
a = 1, b = -100 000 000 , c
数值计算方法思考题
数值计算方法思考题
第一章 预篇
1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣?
3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。
4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?
5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确:
(1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。
(5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。
(8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题
ax2 + bx + c = 0.
下面的公式是熟知的
?b?b2?4acx?.
2a
与之等价地有
x?
对于
2c?b?b?4ac2.
a = 1, b = -100 000 000 , c
数值计算方法思考题
数值计算方法思考题
第一章 预篇
1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣?
3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。
4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?
5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确:
(1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。
(5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。
(8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题
ax2 + bx + c = 0.
下面的公式是熟知的
?b?b2?4acx?.
2a
与之等价地有
x?
对于
2c?b?b?4ac2.
a = 1, b = -100 000 000 , c
数值计算方法思考题
数值计算方法思考题
第一章 预篇
1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣?
3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。
4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?
5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确:
(1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。
(5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。
(8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题
ax2 + bx + c = 0.
下面的公式是熟知的
?b?b2?4acx?.
2a
与之等价地有
x?
对于
2c?b?b?4ac2.
a = 1, b = -100 000 000 , c
数值计算方法思考题和习题
(4) 北京理工大学函大2004-2005学年第1学期
计算机科学与技术专业专升本
数值计算方法思考题和习题
教科书:《科学与工程计算》廖晓钟赖汝编国防工业出版社 2003年版第1 章思考题p26 1,2,3,4,5
第1 章习题pp26-27 1,3,4,5,6,11
第2 章思考题p66 1,3,6,7,8,9,12.13
第2 章习题pp67-68 2,3,4,5,7,11,12,13,14,17,18
第3 章思考题p119 1,3,4,5,6,10,18,19
第3 章习题pp119-121 1,2,3,4,5,12,13
第4 章思考题p144 1,2,3,4,5,7,8
第4 章习题pp144-146 1,2,3,4,5,6,7,10,11,12,13
第5 章思考题p207 1,2,3,4,5,6,7,9,10,11,12.13
第5 章习题pp208-209 1,2,3,4,5,6,7,8,9,10,11,12,13,15
第6 章思考题p257 1,2,3,4,5,6,7,8,10,11,12.14
第6 章习题pp257-259 1,2,3,4,5,6,7,8,11,12,13,15,16,17,18
第7
《数值计算方法》
《数值计算方法》
邹昌文编
2009年10月
上机实验指导书
“数值计算方法”上机实验指导书
实验一 误差分析
实验1.1(病态问题)
实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。
数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。
问题提出:考虑一个高次的代数多项式
p(x) (x 1)(x 2) (x 20) (x k)
k 120
(1.1)
显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动
p(x) x19 0
(1.2)
其中 是一个非常小的数。这相当于是对(1.1)中x19的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个MATLAB函数:“roots”和“poly”。
u roots(a)
其中若变量a存储n+1维的向量,则该函数的输出u为
大学数值计算方法题目答案
数值计算方法 黄云清编
数值计算方法
Project II solutions:
1.Give the formula of the following methods: Langerange Interpolation、Piecewise Linear Langerange Interpolation and Cubic Spline Interpolation
(1)Langerange Interpolation formula:
Ln(x) yili(x),
i 0n
li(x) (x x0)...(x xi 1)(x xi)...(x xn),i 0,1,...,n(xi x0)...(xi xi 1)(xi xi 1)...(xi xn)
其中基函数满足:
1,i j li(xj) 0,i j,i,j 0,1,...n
Piecewise Linear Langerange Interpolation formula: In yjlj(x),
j 0n
x xj 1,xj 1 x xj x xj 1 j x xj 1lj(x) ,xj x xj 1 xj x 0,x
Cubic Spline Interpolation:
S(x
数值分析作业思考题
数值分析思考题1
1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替?
e?x??xe???xx??r3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。
2?1.41,计算 4、 取 ?2?1?,下列方法中哪种最好?为什么?
6(1)3?22?(2)?,?7?52?32,(3)13?3?22?,(4)12?1??6,(5)99?702 数值实验
数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。
Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。
数值计算方法上机题
数值分析思考题9
数值分析思考题9
1、 一个算法局部误差和整体误差的区别是什么?如何定义常微
分方程数值方法的阶?
称 en?y(xn)?yn为某方法在点xn的整体截断误差,设yn是准确的,用某种方法计算yn时产生的截断误差,称为该方法的局部截断误差。可以知道,整体误差来自于前面误差积累,而局部误差只来自于yn的
p?1T?O(h),n?1误差。如果给定方法的局部截断误差为其中p为自然数,
则称该方法是p阶的或具有p阶精度。
2、 显式方法和隐式方法的优缺点分别是什么?多步法中为什么
还要使用单步法? 显式方法优点:方法简单快速。
缺点:精度低。
隐式方法优点:稳定性好。
缺点:精度低,计算量大。
多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。 3、 刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简
单的稳定方法是什么?
了保证数值稳定性,步长h需要足够小,但是为了反映解的完整性,x区间又需要足够长,计算速度变慢。最简单的稳定方法就是扩大绝对稳定域。
4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta法、四阶Adams方法计算下列微分方程初值问题的解。
y?dy3?x?,1?x?2?(1)?dx; x?y(1)?0.4?(
数值计算方法试题一
数值计算方法试题一
一、填空题(每空1分,共17分)
31、如果用二分法求方程x?x?4?0在区间[1,2]内的根精确到三位小数,需对分( )次。
2x?x??(x?2)局部收敛的充分条件是?取值在( )k?1kk2、迭代格式。 ?x30?x?1?S(x)??1(x?1)3?a(x?1)2?b(x?1)?c1?x?3??23、已知是三次样条函数,则
a=( ),b=( ),c=( )。
4、l0(x),l1(x),?,ln(x)是以整数点x0,x1,?,xn为节点的Lagrange插值基函数,则
?lk?0nk(x)?( ),k?0?xlnkj(xk)?( ),当n?2时k?0?(xn4k2?xk?3)lk(x)?( )。
7425、设f(x)?6x?2x?3x?1和节点xk?k/2,k?0,1,2,?,则f[x0,x1,?,xn]? 7?和f0? 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
????(x)k?0是区间[0,1]上权函数?(x)?x的最高项系数为7、k1的正交多项