析因分析spss结果解读

“析因分析spss结果解读”相关的资料有哪些?“析因分析spss结果解读”相关的范文有哪些?怎么写?下面是小编为您精心整理的“析因分析spss结果解读”相关范文大全或资料大全,欢迎大家分享。

对应分析spss例析

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

对应分析spss例析

在现实研究中,研究人员很多情况下所关心的除行和列本身变量之间关系外,更想了解行列变量之间的相互关系;将R和Q型分析合二为一;对应分析应运而生。

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。

主要应用在市场细分、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。

对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。

对应分析法整

Logistic回归分析报告结果解读分析

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

Logistic回归分析报告结果解读分析

Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic回归分析,就可以大致了解胃癌的危险因素。

Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。

1.Logistic回归的用法

一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。

2.用Logistic回归估计危险度

所谓相对危险度(risk

SPSS—回归—多元线性回归结果分析(二)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

SPSS—回归—多元线性回归结果分析(二) 2011-10-27 14:44

,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。

接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示: 结果分析1:

由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands\ 建立了模型1,紧随其后的是“Wheelbase\ 建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等 0.1时,从“线性模型中”剔除

结果分析:

1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些 (0.422>0.300)

2:从“Anova\可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和= 回归平方和+残差平方和,由于

spss数据分析的概论 试题 答案 结果

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《SPSS原理与运用》练习题

数据对应关系:06-均值检验; 07-方差分析; 08-相关分析; 09-回归分析; 10-非参数检验; 17-作图

1、以data06-03为例,分析身高大于等于155cm的与身高小于155cm的两组男生的体重和肺活量均值是否有显著性。 分析:一个因素有2个水平用独立样本t检验,此题即身高因素有155以上和以下2个水平,因此用独立样本t检验(analyze->compare means->independent-samples T test)。 报告:一、体重①m+s:>=155cm 时, m= 40.838kg; s= 5.117;

<155cm 时, m= 34.133kg;s= 3.816; ②方差齐性检验结果:P=0.198>0.05,说明方差齐性。

③t=4.056; p=0.001 < 0.01,说明身高大于等于155cm的与身高小于155cm的两组男生的体重有极显著性差异。

二、肺活量①m+s: >=155cm 时,m=2.404; s=0.402;

<155cm 时, m=2.016;s=0.423; ②方差齐性检验结果:P=0.961>0.05,说明方差齐性。

③t=2.512; p=0.018 < 0.05,说明说明身高大于等于155cm的与身高小于155cm的两组男生的体重有显著性差异。

2、以data06-04为例,判断体育疗法对降低血压是否有效。

分析:比较前后2种情况有无显著差异,用配对样本t检验, (analyze->compare means-> paired-samples T test

spss的试题、答案、结果

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

统计复习题目

一.某公司管理人员为了解某化妆品在一个城市的月销售量Y(单位:箱)与该城市中适合使用该化妆品的人数X1(单位:千人)以及他们 人均月收入X2(单位:元)之间的关系,在某个月中对15个城市做调查,得上述各量的观测值如表A1所示.假设Y与X1,X2之间满足线性回归关系

yi??0??1xi1??2xi2??i,i?1,2,?,15 其中?i独立同分布于N(0,?2).

(1)求回归系数?0,?1,?2的最小二乘估计值和误差方差?的估计值,写出回归方程并对回归系数作解释;analyze-regression-linear,y to dependent,x1 x2 to indepents ,statistics-confidence intervals,save-unstandardized. Prediction individual-individual.ok Coefficients Standardized Unstandardized Coefficients Model 1 (Constant) x1 x2 a. Dependent

SPSS软件聚类分析过程的图文解释及结果的全面分析

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

SPSS聚类分析过程

聚类的主要过程一般可分为如下四个步骤: 1.数据预处理(标准化)

2.构造关系矩阵(亲疏关系的描述) 3.聚类(根据不同方法进行分类) 4.确定最佳分类(类别数)

SPSS软件聚类步骤

1. 数据预处理(标准化)

→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择

从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:

标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|xij*|<1,消去了量纲的影响;在

以后的分析计算中可以减少误差的产生。);Range 0 to 1(极差正规化变换/ 规格化变换);

2. 构造关系矩阵

在SPSS中如何选择测度(相似性统计量):

→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择

常用测度(选项说明):Euclidean distance:欧氏距离(二阶Mink

重复测量设计的方差分析spss例析

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

重复测量的方差分析

重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量(测试指标)在不同时点上进行多次测量所得的资料,称为重复测量资料。这里的重复并不是单一的反复,而是在多个时点上的测量。

这种资料的特点是其定量观测指标的数值会随着时间的变化而发生动态变化,并且各时点上的数值是不满足相互独立的假设的。因此不能用方差分析的方法直接进行处理。

如果在期初、期中、期末分别测量学生的电脑能力,则这是单变量重复测量问题。如果分别在三个时期测量学生的电脑和数学成绩,则是多变量重复测量的问题。

重复测量资料的方差分析需满足的前提条件: 1、 一般方差分析的正态性和方差齐性检验。

2、 协方差矩阵的球形对称性或者复合对称性;需要进行球形检验,检验对

称性。原假设:协方差满足球形对称。当拒绝球形假设时,结果中还有其他表可以检验,见例题中的分析。

被试对象 处理 测量时间1 2 3 4…………m 1 1 …………………………………………. 2 1 ………………………………………….. ………………

智力测试与结果解读

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

全省智障儿童康复技术培训班会议资料

智力测试与结果解读

山东大学齐鲁儿童医院杨良政

智力(intelligence)是“个人行动有目的、思维合理、应付环境有效的一种聚集的或全面的才能。所以说全面,是因为人的行为是以整体为特征;所以说聚集,是因为由诸多要素或诸多能力所构成。这些要素或能力虽非完全独立,但彼此之间有质的区别”( Wechsler,1939年)。

关于智力的本质,研究者们一直未有完全相同的见解。但在以下方面还是有着共识:①抽象思考和推理能力;②学习能力;③适应环境的能力;④解决问题的能力。智力测验是对智力水平进行量化的一种心理测量工具,有的智力测验测查的智力功能比较全面,能够计算出智力商数(智商,intelligence quotient, IQ)。

IQ是智力数量化单位,最初由Terman在1916年修订Stanford Binet(S-B)量表时提出。当时,IQ被定义为智龄(MA)与实足年龄(CA)之比,再将商数乘以100(为了避免小数),即IQ=100× (MA/CA),所得结果称为比率IQ。美国著名心理学家Wechsler于1939年编制韦氏智力量表时,用离差IQ概念代替比率IQ。所谓离差IQ是将被试的测验分数与同龄组的人比较所得到的

临床实验室检查结果解读血常规结果解读(一)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

血液常规检验是临床上最常用和较重要的检验项目之一,人体在某些生理状况下或发生疾病时,常可引起血液细胞成分发生数量和质量的变化。通过对血液中红细胞、白细胞和血小板数量、白细胞分类及相关参数的变化,对临床有关疾病的诊断、观察疾病的变化及治疗效果具有重要参考价值。

维普资讯

临床实验室检查结果解读血常规结果解读 ( 一)宁平

(中国医科大学附属盛京医院检验科,704 700 )

中图分类号。 4 R4文献标识码: A文章编号 6278 (08 l7— 1520)0 ̄040 6 01-2

围、感染的严重程度、患者的反应能

血时,三少”呈“表现,时白细胞可此少到 l 0/以下,×l L分类时几乎均

力。如感染很局限且轻微,白细胞总数仍可正常,但分类检查时,可见中性粒细胞有所增高;中度感染时,白细胞总数常增高>1 0×1 L, 0/并伴有轻度核左移;严重感染时,白细胞总数常明显增高,可达2 .×1 L 00 0 /

为淋巴细胞,因中性粒细胞严重乃减少所致的淋巴细胞相对增多。小部分急性白血病其白细胞总数不高反而减低,称非白血性白血病,白其细胞可<l 0/分类时也呈淋×l L,巴细胞相对增多,此时只有骨髓检

血液常规检

频率学视角下的网状meta分析及其结果解读

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

频率学视角下的网状meta分析及其结果解读

自meta分析问世以来,每年发表的文献不断增多,显示出一幅欣欣向荣的景。不用做实验,收集文献,一台电脑,一个数据库即可,省力又省钱,说是临床神技不为过。然而,随着写的人越来越多,普通的meta分析越来越难找到主题,投稿越发的困难。目前,较火的meta分析要算是网状meta了。相对于普通meta,网状meta的优势显而易见。目前,网状meta又可以分为基于贝叶斯理论和频率学理论两大派。贝叶斯的网络meta分析可用winbugs实现,可惜,单独的winbugs并无作图功能,无法给出森林图等图形化结果,目前普遍的方法是结合R软件或stata软件,读取winbugs计算结果进行作图。其次,单独使用R软件也能实现贝叶斯的网状meta分析,缺陷在于只能实现一致性模型,假如结果存在不一致的情况,仍然要借用winbugs计算。Winbugs的缺陷除了不能作图,还存在编程困难的问题,对于医学专业学生来说,编程是一项极为复杂的事,虽然能找到基本代码进行修改,但是如何修改,如何软件的互相调用,也是一大难题,稍有不慎,代码出错极难解决。网状meta的另一个方法是基于频率学派的,此方法只要stata就能完全操作,包括结果的可