绝对值的最值问题初一七年级
“绝对值的最值问题初一七年级”相关的资料有哪些?“绝对值的最值问题初一七年级”相关的范文有哪些?怎么写?下面是小编为您精心整理的“绝对值的最值问题初一七年级”相关范文大全或资料大全,欢迎大家分享。
初一(七年级)数学绝对值练习题及答案解析
.
初一(七年级)数学上册绝对值同步练习题
基础检测:
1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点
到的距离。
6.如果x <y <0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱=3 ,则x =。
8.若︱x+3︱+︱y -4︱= 0,则x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,
︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是()
A 一个正数的绝对值一定是正数
精品
.
精品 B 一个负数的绝对值一定是正数
C 任何数的绝对值一定是正数
D 任何数的绝对值都不是负数
16.下列说法错误的个数是 ( )
(1) 绝对值是它本身的数有两个,是0和1
(2) 任何有理数的绝对值都不是负数
(3) 一个有理数的绝对值必为正数
(4) 绝对值等于相反数的数一定是非负
七年级上册绝对值试卷华师大版
七 年 级 上 册 绝 对 值 试 卷(120分)
班级 姓名 得分
一、选择题(每题2分,20题,共40分)
1、有理数的绝对值一定是 ( )
A、正数 B、整数 C、正数或零 D、自然数 2、下列说法中正确的个数有 ( )
①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A、1个 B、2个 C、3个 D、4个
3、如果甲数的绝对值大于乙数的绝对值,那么 ( ) A、甲数必定大于乙数 B、甲数必定小于乙数
C、甲、乙两数一定异号 D、甲、乙两数的大小,要根据具体值确定 4、绝对值等于它本身的数有 ( )
A、0个 B、1个 C、2个 D、无数个 5、下列说法正确的是( )
A、?a一定是负数 B、只有两个数相等时它们的绝对值才相等 C、若a?b,则a与b互为相反数 D、若一个数小于它的绝对值,则这个数为负数 6、(2005年济南)若a与2互为相反数,则
高考数学中的绝对值问题
高考数学中的绝对值问题
绝对值是高中数学中的一个基本概念,“绝对值问题”历来是高考中经常涉及的问题,可谓常考常新,与函数、导数、数列、不等式证明等知识交汇相结,成为高考的“新宠”。特别是“绝对值”问题为背景与初等函数结合所构成的综合题。由于它们在知识上具有综合性,题型上具有新颖性,解题方法上具有灵法多变,还需要利用数形结合、分类讨论、绝对值不等式的放缩等数学思想,对考生的综合知识能力要就求较高,成为考生之间拉分的重要题型之一。今天只对与函数、不等式结合的绝对值问题的几道例题略作分析,供同学们思考。
一、知识储备:
(1)绝对值概念、绝对值的非负性、几何意义、绝对值的函数图象等。 (2)各类绝对值不等式的解法。
(1)x?a??a?x?a(a?0); (2)x?a?x?a或x??a(a?0); (3)|f(x)|?g(x)??g(x)?f(x)?g(x);
(4) |f(x)|?g(x)?f(x)??g(x)或f(x)?g(x). (3)绝对值三角不等式:
||a|?|b||?|a?b|?|a|?|b|,及其左右两个等号各自成立的条件。 二、例题:
例1、已知a,b,c?R函数f(x)?ax2?bx?c,g(x)?ax?b,
当x?[?
含绝对值的函数问题处理
函数问题,绝对值,分类讨论,数形结合,推理与论证的逻辑思维能力
含绝对值的函数问题处理
1.(2005年江苏卷)已知a∈R,函数f(x)=x2|x-a|. (I)当a=2时,求使f(x)=x成立的x的集合; (II)求函数y=f(x)在区间[1,2]上的最小值. 解析:(I)若a=2,则有:f(x)=x
2
2ìïx(x-2),x 2ï, x-2=í
ï-x2(x-2),x<2ïî
①当x≥2时,有x2(x-2)=x,解得x=0或x2-2x-1=0,
解得:x1=1+取x1=1+
x2=1-
,
2
x<2时,有-x(x-2)=x,解得:x=0或x=1.
综上所述,当a=2时能使f(x)=x成立的x的集合为{0,1
,1+(II)对函数式进行分解得:f(x)=x
2
2ìïx(x-a),x a
x-a=ïí
ï-x2(x-a),x<aïî
}
2a2
, ①当x≥a时,设f1(x)=x2(x-a),则f1¢(x)=3x-2ax,得极值点x=0或x=
3
a. 当a<0时,函数f(x)在区间çç-ト,
1.2.3 绝对值教案
第一章(第4课时) 1.2 绝对值
教学目标
1 理解绝对值的意义,会求一个数的绝对值
2 通过观察、比较、归纳得出绝对值的概念,感受数形结合的思想。 重点难点:
重点:绝对值的意义和求一个数的绝对值; 难点:绝对值概念的理解 教学过程
一 激情引趣,导入新课
1 什么叫相反数?相反数有什么特点?
2 如图,学校位于数轴的原点处,小光、小明、小亮的家分别位于点A、B、C处,单位长度为1千米,(1)小光、小明、小亮的家分别距学校多远?(2)如果他们每小时的速度都是3千米,求三人到学校分别需要多少时间?
AB-2-101234C5
二 合作交流,探究新知 1 绝对值的概念
-5-4-3 (1) 上面问题中,我们要求三人与学校的距离,和三人到学校的时间,这与方向有关吗?
(2) 上面问题中,A、B、C三个点在数轴上分别表示什么数?离原点的距离是多少 归纳:在数轴上,表示一个数的点离开原点的距离叫做这个数的__________.
如:2的绝对值等于2,记作:2=2,-2的绝对值等于___,记作:____________________ 考考你:
把下列各数表示在数轴上,并求出他们的绝对值。 -4、3.5、-2
1,0、-3.5,5 2-5
七年级数学上册《绝对值》教案7篇
作为一名人民教师,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。那么教案应该怎么写才合适呢?这次帅气的小编为您整理了七年级数学上册《绝对值》教案7篇,希望能够给予您一些参考与帮助。
篇一:绝对值教案 篇一
绝对值
教学目标: 通过数轴,使学生理解绝对值的概念及表示方法
1、 理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算
2、 通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法
3、 通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力
教学重点: 理解绝对值的概念、意义,会求一个数的绝对值
教学难点: 绝对值的概念、意义及应用 教学方法: 探索自主发现法,启发引导法 设计理念: 绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 。通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。 教学过程:
一、 创设情境,复习
1-2-3绝对值定值、最值探讨 讲义教师版
绝对值定值、最值探讨
中考要求
内容 绝对值
基本要求
略高要求 会利用绝对值的知识解决简单的化简问题 较高要求 借助数轴理解绝对值的意义,会求实数的绝对值 例题精讲
板块一:绝对值几何意义
当x?a时,x?a?0,此时a是x?a的零点值.
零点分段讨论的一般步骤:
找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a的几何意义:在数轴上,表示这个数的点离开原点的距离.
a?b的几何意义:在数轴上,表示数a、b对应数轴上两点间的距离.
一、绝对值定值探讨
【例1】 若x?1?x?2?x?3???x?2008的值为常数,试求x的取值范围. 【考点】绝对值定值探讨 【难度】4星 【题型】解答 【关键词】
【解析】要使式子的值为常数,x得相消完,当1004≤x≤1005时,满足题意. 【解答】1004≤x≤1005
【巩固】 若2a?4?5a?1?3a的值是一个定值,求a的取值范围. 【考点】绝对值定值探讨 【难度】4星 【题型】解答 【关键词】
【解析】要想使2a?4?5a?1?3a的值是一个定值,就必须使得4?5a?0,
初一奥数专题五绝对值
初一奥数专题五绝对值
专题五 绝对值
1.(第15届希望杯竞赛题)已知a=|-2004|+15,则a是( )
A.合数 B.质数 C.偶数 D.负数
2.(北京市迎春杯竞赛题)已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=
3.(第16届希望杯竞赛题)如果|a|=3,|b|=5,那么|a+b|-|a-b|的绝对值等于
4.(2004年重庆市竞赛题)计算:|-3112|+|-|-|-|= 43421111
5.(希望杯竞赛题)若|a+b+1|与(a-b+1)2互为相反数,则a与b的大小关系是
A.a>b B.a=b C.a<b D.a b
6.(希望杯竞赛题)如果|m-3|+(n+2)2=0,则方程3mx+1=x+n的解是
初一奥数专题五绝对值
7.(希望杯竞赛题)|x+1|+|x-1|的最小值是
A.2 B.0 C.1 D.-1
8.(第13届江苏省竞赛题)|x+1|+|x-2|+|x-3|的最小值是多少?
9.(希望杯竞赛题)设a,b,c为整数,且|a-b|+|c-a|=1,求|c-a|+|a-b|+|b
数学七年级上2.3绝对值与相反数(2)
课题:§2.3绝对值与相反数(2) 课时编号:007
备课时间:2008.9.2 学习时间:2008.9.8 主备人:张波 王有亮 金广敏 学习目标:1、能说出有理数的相反数的意义;
2、会求一个数的相反数,并能在数轴上表示; 3、理解正数、0、负数的绝对值特点; 4、会简化一个数的多重符号;
5、经历知识的探究过程,感受数形结合的思想。 学习重点:相反数的意义及符号简化 学习难点:正数、0、负数的绝对值特点 学习内容: 一、自学提纲
1、观察数轴上点A、B的位置及其到原点的距离,有何发现?
2、观察下列各对有理数,你发现了什么?
①5与-3, -2与3, -7与6 ②5与-5, 3与-3, -
22与 332、只有___________________________________的两个数互为相反数,其中一个数是另一个数的____________,请写出6对相反数。
3、由相反数的定义说说它们在数轴上的位置关系,并在数轴上感受0的相反数。 4、如何表示一个数的相反数。
5、分别写出
数学七年级上华东师大版2.4绝对值教案
www.xkb1.com 新课标第一网,资源无限制下载就是好! 2.4 绝对值
《2.4绝对值》
教学目标:
1、知识与技能目标:(1)、理解绝对值的代数意义和几何意义;会求一个有理数的绝对值。 (2)、知道一个有理数的绝对值是个非负数;能够利用绝对值解决相关问题。
2、过程与方法目标:(1)、经历从具体情境发现并提出问题,抽象出绝对值及其数学符号的过程,建立数感和符号感;通过从不同角度分析绝对值的意义和性质,体验分类发现解决问题的策略,初步形成评价与反思的意识.。
(2)、经历观察、发现、猜想、验证、归纳等数学活动,得出和认识绝对值的意义,发展学生发现、探索问题能力和发散思维能力以及应用意识。
3、情感与态度目标:(1)、体验绝对值是有效描述现实世界的重要手段,认识绝对值是解决问题和进行交流的重要工具。
(2)、培养学生勤于实践、勇于探索、合作交流的精神,增强学生学好数学的勇气和信心. 教学重点:绝对值意义和性质的探索.
教学难点:运用绝对值的意义和性质解决相关问题. 教学准备:多媒体课件 教学时数:一课时