离散数学期末知识点总结
“离散数学期末知识点总结”相关的资料有哪些?“离散数学期末知识点总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“离散数学期末知识点总结”相关范文大全或资料大全,欢迎大家分享。
离散数学知识点总结
总结 离散数学知识点
第二章 命题逻辑
1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;
5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项;
7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取;
8.永真式没有主合取范式,永假式没有主析取范式;
9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则
①真值表法;②直接证法;③归谬法;④附加前提法;
第三章 谓词逻辑
1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^;
3.既有存在又有全称量词时,先消存在量词,再消全称量词;
离散数学期末复习
离散数学期末复习
一、选择题 1、
下列各选项错误的是
A、? ? ? B、? ? ? C、? ?{ ?} D、? ? {? }
2、命题公式 (p∧q) →p 是 A、矛盾式 B、重言式 C、可满足式 D、等值式
3、如果是R是A上的偏序关系,R-1是R的逆关系,则R∪R-1是
A、等价关系 B、偏序关系 C、全序关系 D、都不是
4、下列句子中那个是假命题? A、
是无理数.
B、2 + 5 =8.
C、x + 5 > 3 D、请不要讲话! 5、下列各选项错误的是? A、? ? ? B、? ? {? } C、? ?{ ?} D、{? } ? ?
6、命题公式 p→(p?q?r)是? A、重言式 B、矛盾式 C、可满足式 D、等值式
7、函数f : N→N, f(x)=x+5,函数f是 A、单射 B、满射 C、双射 D、都不是
8、设D= D、不连通的 9、关系R1和R2具有反自反性,下面运算后,不能保持自反性的是 A、R1 ?R2 B、R1-1 C、R1 ?R2 D、R1 -R2 10、连通平面图G有4个
离散数学期末复习
离散数学
一、填空20%(每空2分):
1.若对命题P赋值1,Q赋值0,则命题P?Q的真值为 。 2.命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为 3.公式?(P?Q)?(P??(Q??S))的对偶公式为
4.图 的对偶图为
5.若关系R是等价关系,则R满足 性质。 6.关系R的传递闭包t (R) = 。 7.代数系统?A,??是群,则它满足 8.设?A,?,??和?B,?,??是两代数系统,f是从?A,?,??到?B,?,??的同态映射,则f具有 性质。
离散数学期末复习总要
离散数学期末复习各个章节要点纲要(及定理)
离散数学定义定理
1.3.1命题演算的合式公式规定为: (1)单个命题变元本身是一个合式公式。 (2)如果A是合式公式,那么┐A是合式公式。
(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。 (4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。
1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。
1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。若指定的一种指派,使P的值为真,则称这组指派为成真指派。若指定的一种指派,使P的值为假,则称这种指派为成假指派。 含n个命题变元的命题公式,共有2n个指派。
1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。
1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。 1.3.6
离散数学期末试卷
《离散数学》期末考试试卷(A卷)
--------------------------------------------------------------------------------------------------------------------------------------------------- 03.A?{?,{a},{b},{a,b}}上的包含关系为?,则子集C?{{a},{b}}的极大元为
____,极小元为____,上界为____,下界为____,最大元为___, 最小元为___(若没有填无)。 04.设A?{a,b},则A上共有___个不同的等价关系。
05.有一个函数f:X?Y,若要使f有逆函数,f就必须是___。
三、演算题(每小题10分,总30分)
年级 专业 姓名 学号 座位号
大登
一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题干后的括号内。每题3分,共18分) 01.下列语句中,真命题是( )
A、我正在说谎; B、若1?2?3,则雪是黑的; C、这句话
离散数学期末复习题
离散数学期末复习题
一、选择题
1、永真式的否定是(2) (2) 永假式
2、设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,则下列真命题为(1) (1)P?Q?R
3、设P:我听课,Q:我看小说,则命题R“我不能一边听课,一边看小说”的符号化为⑵ ⑵P??Q(3)
提示:R??(P?Q)?P??Q 4、下列表达式错误的有⑷ ⑷P?(?P?Q)?P?Q 5、下列表达式正确的有⑷ ⑷?(P?Q)??Q
6、下列联接词运算不可交换的是(3) (3)?
6、设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y,则命题“有的人喜欢所有的花”的逻辑符号化为⑷ ⑷?x(M(x)??y(F(y)?H(x,y))
7、设L(x):x是演员,J(x):x是老师,A(x , y):x钦佩y,命题“所有演员都钦佩某些
老
师”的逻辑符号化为⑵
⑵?x(L(x)??y(J(y)?A(x,y)))
8、谓词公式?x(P(x)??yR(y))?Q(x)中的 x是⑶ ⑶既是自由变元又是约束变元 9、下列表达式错误的有⑴
⑴?x(A(x)?B(x))??xA(x)??xB(x)
离散数学期末复习题
离散数学期末复习题
一、选择题
1、永真式的否定是(2) (2) 永假式
2、设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,则下列真命题为(1) (1)P?Q?R
3、设P:我听课,Q:我看小说,则命题R“我不能一边听课,一边看小说”的符号化为⑵ ⑵P??Q(3)
提示:R??(P?Q)?P??Q 4、下列表达式错误的有⑷ ⑷P?(?P?Q)?P?Q 5、下列表达式正确的有⑷ ⑷?(P?Q)??Q
6、下列联接词运算不可交换的是(3) (3)?
6、设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y,则命题“有的人喜欢所有的花”的逻辑符号化为⑷ ⑷?x(M(x)??y(F(y)?H(x,y))
7、设L(x):x是演员,J(x):x是老师,A(x , y):x钦佩y,命题“所有演员都钦佩某些
老
师”的逻辑符号化为⑵
⑵?x(L(x)??y(J(y)?A(x,y)))
8、谓词公式?x(P(x)??yR(y))?Q(x)中的 x是⑶ ⑶既是自由变元又是约束变元 9、下列表达式错误的有⑴
⑴?x(A(x)?B(x))??xA(x)??xB(x)
离散数学期末作业本科
1 / 6
一、 命题逻辑部分
1.计算真值表、并由此写出主析取与主合取范式(一个命题公式的主范式具有唯一的表示形式,这样可以精减一个推理系统,去掉多余的等价的前提。其唯一性借助于小项或大项的设计,一个公式中所用到的小项或大项个数与其真值表中所对应的1或0的个数相对应,不能多也不能少)。注意:真值表与公式有什么区别?
2.设 A 、B 是两个命题公式,证明:
a) A B 当且仅当A B 是永真式。b) A B 的充要条件是A B 且B A 。
等价与蕴涵是对两个公式进行比较的概念,性质b)说明两者之间的关系,相对而言蕴涵比等价更重要。与上面两个性质相关联的一个等价公式是:A B A →B ∧B →A.3.证明 P →(Q →R )?Q →(P →R )? ┐R →(Q → ┐P ) 4.证明从前提P →Q ,┐(Q ∨R)可演绎出┐P .
5.证明R →S 可从前提P →(Q →S),┐R ∨P 和Q 推出。 ├ 6、使用推理规则或归结推理,论证推理形式 1) P →Q, R →?Q ,R ∨S, S →?Q ├?P
2)?P ?Q, S →?Q, ?R, R ∨S ├ P
二、 谓词逻辑
1、 写出谓词的含义、一个谓词公式的解释应包含什么
离散数学第一章知识点总结
离散数学第一章知识点总结(仅供参考)
1.判断给定的句子是否为命题的基本步骤:首先应是陈述句;其次要有唯一的真值。 例:(1)我正在说谎。
不是命题。因为无法判定其真假值,若假设它为假即我正在说谎,则意味着它的反为真,即我正在说实话,二者相矛盾;若假定它为真即我正在说实话,则意味着它的反为假,我正在说谎,二者也相矛盾。这其实是一个语义上的悖论。悖论不是命题 (2)x-y >2。
不是命题。因为x, y的值不确定,某些x, y使x?y>2为真,某些x, y使x?y>2为假,即x?y>2的真假随x, y的值的变化而变化。因此x?y>2的真假无法确定,所以x?y>2不是命题。
2.命题可以分为两种类型:原子命题(不能再分解为更简单命题,又可称为简单命题); 复合命题(通过联结词、标点符号将原子命题联结而成的命题) 3.命题常元:一个命题标识符如果表示确定的简单命题,就称为命题常元
命题变元:如果一个命题标识符只表示任意简单命题的位置标志,就称它为命题变元 注:当命题变元P用一个特定的简单命题取代时,P才能确定真值,这时也称对P进行指派
4.联接词:(1)否定联
高二数学期末复习知识点总结
高二数学期末复习知识点总结
一、直线与圆:
、直线的倾斜角?的范围是[0,?)
在平面直角坐标系中,对于一条与x轴相交的直线l,如果把x轴绕着交点按逆时针方向转到和直线l重合时所转的最小正角记为?,?就叫做直线的倾斜角。当直线l与x轴重合或平行时,规定倾斜角为;
、斜率:已知直线的倾斜角为α,且α≠°,则斜率α.
过两点(),()的直线的斜率( )(),另外切线的斜率用求导的方法。 、直线方程:⑴点斜式:直线过点(x0,y0)斜率为k,则直线方程为
y?y0?k(x?x0), ⑵斜截式:直线在y轴上的截距为b和斜率k,则直线方程为y?kx?b
、l1:y?k1x?b1,l2:y?k2x?b2,①l1∥l2?k1?k2,b1?b2; ②l1?l2?k1k2??1.
直线l1:A1x?B1y?C1、点P(x0,y0)到直线两条平行线
?0与直线l2:A2x?B2y?C2?0的位置关系: ()平行? 注意检验 ()垂直? 1A
Ax?By?C?0的距离公式d?Ax0?By0?CA?B22;
A?B22222、圆的标准方程:(x?a)?(y?b)?r.⑵圆的一般方程:x?y?Dx?Ey?F?0
注意能将标准方程化为一般方程
、过圆外一点作圆的切线