含参的定积分求导

“含参的定积分求导”相关的资料有哪些?“含参的定积分求导”相关的范文有哪些?怎么写?下面是小编为您精心整理的“含参的定积分求导”相关范文大全或资料大全,欢迎大家分享。

常用的求导积分公式及解法

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

常用的求导积分公式及解法

常用的求导积分公式及解法 1.基本求导公式

⑴ (C) 0(C为常数)⑵ (xn) nxn 1;一般地,(x ) x 1。 特别地:(x) 1,(x2) 2x,()

1x

11

,。 (x) 2

x2x

⑶ (ex) ex;一般地,(ax) axlna (a 0,a 1)。 ⑷ (lnx)

11

(a 0,a 1)。 ;一般地,(logax)

xxlna

2.求导法则 ⑴ 四则运算法则

设f(x),g(x)均在点x可导,则有:(Ⅰ)(f(x) g(x)) f (x) g (x); (Ⅱ)(f(x)g(x)) f (x)g(x) f(x)g (x),特别(Cf(x)) Cf (x)(C为常数); (Ⅲ)(

f(x)f (x)g(x) f(x)g (x)1g (x)

,特别。 ) , (g(x) 0)() 22

g(x)g(x)g(x)g(x)

3.微分 函数y f(x)在点x处的微分:dy y dx f (x)dx 4、 常用的不定积分公式

1 1x2x32

xdx 1x C ( 1), dx x c, xdx 2 c, xdx 3(1) ;

4x3

xdx c 4

1axxxx

C (a 0,

定积分的应用

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

洛阳师范学院 数学科学学院 《数学分析》教案

第十章 定积分的应用

在上一章引入定积分概念时,曾把曲边梯形的面积、变速直线运动的路程表示为积分和的极限,即要用定积分来加以度量。事实上,在科学技术中采用“分割、作和、取极限”的方法去度量实际量得到了广泛的应用。本章意在建立度量实际量的积分表达式的一种常用方法——微元法,然后用微元法去阐述定积分在某些几何、物理问题中的应用。

§1平面图形的面积

教学目标:掌握平面图形面积的计算公式. 教学内容:平面图形面积的计算公式.

(1) 基本要求:掌握平面图形面积的计算公式,包括参量方程及极坐标方程所定义的平面图形面积的计算公式.

(2) 较高要求:提出微元法的要领. 教学建议:

(1) 本节的重点是平面图形面积的计算公式,要求学生必须熟记并在应用中熟练掌握.

(2) 领会微元法的要领. 教学过程:

1、微元法

bI?众所周知,定积分

?f?x?dxa是由积分区间

?a,b?及被积函数f(x)所决定

的,而定积分对积分区间具有可加性,即如果把积分区间作为任意划分

?:x0?a?x1?x2???xn?1?xn?b

?Ik??xkxk?1f(x)dx k?1,2

广义积分、定积分应用

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

第四节 广义积分

在一些实际问题中,我们常遇到积分区间为无穷区间或被积函数为无界函数的积分,它们已经不属于前面所说的定积分,因此,我们需要对定积分作两种推广,从而形成了广义积分的概念. 一. 无穷区间上的广义积分

1.引例1.求下述广义曲边梯形的面积.

(1)由曲线y?e?x,及x轴、y轴所围成的图形的面积(作图) 解:A?limb????b0?x?b??1 edx?lim?1?e?b????(2)由曲线y?ex,及x轴、y轴所围成的图形的面积(作图) 解:A?lima????0axa??1. edx?lim?1?e?a????2.定义1.设函数f?x?在区间?a,???上连续,取b?a.如果极限 lim存在,则称此极限为函数f?x?在区间?a,???上的广义积分,记作?即:???a??b????f?x?dxab

af?x?dx.

f?x?dx?lim??b????f?x?dxab ————(1)

这时,也称广义积分?惯上称为广义积分???aaf?x?dx收敛;如果上述极限不存在,函数f?x?在区间?a,???上的广义积分就没有意义,习

f?x?dx发散.

定义2.设函数f?x?在区间???,b?上连续,取a

定积分的应用论文

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

学号:

本科毕业论文

学 院 专 业 年 级 姓 名 论文题目 定积分的若干应用 指导教师 薛艳昉 职称 讲师

2013年5月16日

目 录

摘 要 ····························································································· 1 关键词 ····························································································· 1 Abstract ···········································································

定积分的概念说课稿

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

定积分的概念说课稿

基础教学部 高黎明

一、教材分析 1、教材的地位和作用

本节课选自同济大学《高等数学》第五章第一节定积分的概念与性质,是上承导数、不定积分,下接定积分在几何学及物理学等学科中的应用。定积分的应用在高职院校理工类各专业课程中十分普遍。 2、教学目标

根据教材内容及教学大纲要求,参照学生现有的知识水平和理解能力,确定本节课的教学目标为:

(1)知识目标:理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。

(2)能力目标:培养学生分析和解决问题的能力,培养学生归纳总结能力,为后续的学习打下基础。

(3)情感目标:从实践中创设情境,渗透“化整为零零积整”的辩证唯物观。 3、教学重点和难点

教学重点:定积分的概念和思想 。

教学难点:理解定积分的概念,领会定积分的思想 。 二、 教法和学法 1、教法方面

以讲授为主:案例教学法(引入概念),问题驱动法(加深理解), 练

习法(巩固知识), 直观性教学法(变抽象为具体) 。 2、学法方面

板书教学为主,多媒体课件为辅(化解难点、保证重点) 。 (1)发现法解决第一个案例 ; (2)模仿法解决第二个案例 ; (3)

定积分讲义

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

课程安排:2学期,周学时 4 , 共 96 学时. 主要内容:定积分的计算 要求:听课 、复习 、 作业 本次课题(或教材章节题目):第五章 定积分 第一节 定积分的概念与性质 教学要求: 1.了解定积分的概念 2.掌握定积分的性质 重 点:定积分的性质 难 点: 1.定积分的概念 2.定积分的性质 教学手段及教具:讲授为主 讲授内容及时间分配: 1 复习 5分钟 2 定积分问题举例 15分钟 3 定积分定义 15分钟 4 定积分的性质 30分钟 5 例题及练习 25分钟 课后 作业 参考 资料 定积分的概念与性质 一、复习不定积分的概念 二、定积分问题举例 曲边梯形的面积 曲边梯形由连续曲线y?f(x)(f(x)?0)、y?f(x)(f(x)?0)、x?b所围成(如图1). 图1 提问:怎样

定积分的计算方法

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

定积分的计算方法

摘要

定积分是积分学中的一个基本问题,计算方法有很多,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法。以及其他特殊方法和技巧。本论文通过经典例题分析探讨定积分计算方法,并在系统总结中简化计算方法!并注重在解题中用的方法和技巧。

关键字:定积分,定义法,莱布尼茨公式,换元法

Calculation method of definite integral

Abstract

the integral is the integral calculus is a fundamental problem, its calculation method is a lot of, (1)definition method, (2)Newton - Leibniz formula, (3)integral subsection integral method, (4) substitute method.This paper, by classic examples definite integral analysis method, and in the system o

定积分的概念NO13

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

高二二部数学教学案NO13(理)

设计人:孙国林 审核人:王彦 日期:2013.03.20

【课程标准】

★了解曲边梯形的面积、汽车行驶的路程的求解方法,了解“以直代曲”、“以不变代变”的思想方法。

【本节目标】

★了解求曲边梯形的面积、汽车行驶路程的方法

★了解“以直代曲”、“以不变代变”的思想方法

【自主学习】

1.求解曲边梯形的面积的解题步骤是什么?分为几步?

2.定积分的概念是什么?

3.定积分的几何意义是什么?

4.写出定积分的性质

【典例分析】

例1.已知汽车作变速直线运动,在时刻t(单位:h)的速度为

km/h),那么它在0≤t≤1这段时间内行驶的路程s是多少?

v t t2 2(单位:

例2.利用定积分的定义,计算 x3dx01

例3.计算 (2x x3)dx01

【拓展提高】

1.简化下列各式,并画出各题所表示的图形的面积:

(1) (1 x)dx (x 1)dx0112 (2) xdx x2dx 3 2 221

2.利用定积分表示抛物线y=x2 2x 3与直线y=x+3所围成的图形的面积。

【课堂练习】

1.下列等于1的积分是( )

A. xdx01 B x 1 dx01

b

aC 1dx0ba1

定积分及其应用

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

第5章 定积分及其应用

本章讨论积分学的第二个问题——定积分.定积分是某种特殊和式的极限,它是从大量的实际问题中抽象出来的,在自然科学与工程技术中有着广泛的应用.

本章主要讲授定积分的定义、性质,积分上限函数及其导数,牛顿-莱布尼兹公式,定积分的换元法和分部积分法,广义积分,以及定积分在几何、物理、经济上的应用等.

通过本章的学习,学生能够理解定积分的概念及其几何意义,了解函数可积的条件;掌握定积分的基本性质和对积分上限函数求导数的方法;能利用牛顿-莱布尼兹公式和定积分的换元法、分部积分法计算定积分;了解广义积分收敛和发散的概念,会求广义积分;会用定积分求平面图形的面积和简单的旋转体的体积,会用定积分解决沿直线运动时变力所做的功等实际问题.

5.1 定积分的概念与性质

5.1.1 引例

1.曲边梯形的面积

设函数f(x)在区间[a,b]上连续,且f(x)?0.由曲线y?f(x),直线x?a,x?b以及x轴所围成的平面图形称为曲边梯形(如图5-1所示),下面讨论如何求该曲边梯形的面

积.

不难看出,该曲边梯形的面积取决于区间[a,b]及曲边y?f(x).如果y?f(x)在[a,b]上为常数,此时曲边梯形为矩形,则其面积等于h(b?a).现在

欧拉积分在求解定积分中的应用

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

2009年9月第23卷第3期

阴山学刊

YINSHANACADEMICJOURNAL

Sep.2009V01.23

No.3

欧拉积分在求解定积分中的应用

(包头师范学院学报编辑部,内蒙古包头014030)

摘要:本文叙述了欧拉积分的定义及相关性质,着重通过举例说明欧拉积分在实际计算中的应用。关键词:欧拉积分;定义;性质;应用

中图分类号:0172.2文献标识码:A文章编号:1004—1869(2009)03-0022—03

求解定积分是学习高等数学的一个重要内容,也是解决数学问题的一个基本技能。求解定积分的

∞)内闭一致收敛。F(d)在区间(0,+∞)连续,求导在积分号下进行:

方法一般来说是先求出原函数,然后再根据牛顿一一莱布尼茨公式带人上下限进行计算。这种方法对

于一般的定积分求解问题比较实用。

r“’(a)=f石”1e1(1似)“dx

(2)递推公式Vd>0,有

r(a+1)=ar(a)。

这个性质可有分布积分公式得到。

,+∞

,+蕾

在实际问题中,有许多定积分的原函数,难以计算或者计算过程非常繁杂。而如果将其进行适量的变量代换,变为我们熟悉的定积分,那么这一问题就

得到了很好的解决。欧拉积分恰恰就是我们解决这

r(a+1)=I

Xae-x

石。e—dx=I加

x。d(一