小学数学鸡兔同笼教学设计
“小学数学鸡兔同笼教学设计”相关的资料有哪些?“小学数学鸡兔同笼教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学鸡兔同笼教学设计”相关范文大全或资料大全,欢迎大家分享。
数学广角鸡兔同笼教学设计
数学广角《鸡兔同笼》教学设计
绥安中心学校 执教者 黄协艺 指导老师 黄巧玲
【教材分析】
"鸡兔同笼"问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。 “鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。 解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的饿一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。 配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。
【教学目标】
1、知识与技能:经历和体验用各种巧妙方法
《鸡兔同笼》教学反思
《鸡兔同笼》教学反思
一年一度的校本教研——“两课两反思”活动如期而至,有幸代表六年级数学组参与其中。这次活动的主题为“数学思考”,根据这一主题,会同本组老师意见和自身条件,结合学生实际认知水平,我选择了执教人教版数学六年级上册数学广角的一节内容——鸡兔同笼。
这一题材,在不同版本的教材其编排不尽相同。如:北师版教材借助“鸡兔同笼”这一载体让学生经历列表——尝试——再调整的过程,体会解决问题的一般策略——列举,旨在通过对一些现象观察、思考,是学生发现一些特殊的规律,获得解决问题的方法;人教版教材则先后呈现了猜测列表法、假设法、列方程、抬腿法等,注重体现不同的解题思路和方法,旨在观察、猜测、实验、推理等活动,培养学生的逻辑思维能力,使学生体会代数方法的一般性;而苏教版呈现的是画图与列表,但更强调画图。
对于“鸡兔同笼”问题,一些学生通过校外的辅导班曾学习过,学生知道如何求解“鸡兔同笼”的方法,但对于为什么是这样却说不明白其中的原因。而这一课题,XX、XXX、XXX、XXX等名师都上过,也有不少经典的教学案例,但其侧重点不同,风格也不一样。面对自己的学生,他们的教学案例不一定适用于我们学生实际。同一个载体———鸡兔同笼
问题,不同的老师
《鸡兔同笼》教学反思
《鸡兔同笼》教学反思
《鸡兔同笼》教学反思
《鸡兔同笼》问题教学对于四年级的学生来说有一定的难度,课前我对我班的学生进行了调查。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
对于本节课我个人认为在设计上还是有一定优势的,主要体现在以下几点:
一、好的开端是成功的一半,抓住知识上的联系激发了学生的学习热情。然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于鸡兔同笼问题在小学五年级学稍复杂的方程时出现过,也有小部分学生可能在数奥书上见过,会做。而对于四年级的孩子来说,大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答鸡兔同笼问题的第一部分假设全
《鸡兔同笼》教学反思
《鸡兔同笼》教学反思
《鸡兔同笼》教学反思
《鸡兔同笼》问题教学对于四年级的学生来说有一定的难度,课前我对我班的学生进行了调查。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
对于本节课我个人认为在设计上还是有一定优势的,主要体现在以下几点:
一、好的开端是成功的一半,抓住知识上的联系激发了学生的学习热情。然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于鸡兔同笼问题在小学五年级学稍复杂的方程时出现过,也有小部分学生可能在数奥书上见过,会做。而对于四年级的孩子来说,大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答鸡兔同笼问题的第一部分假设全
鸡兔同笼题
1、 医院实验室里一共饲养白兔和黑兔54只,白兔是黑兔只数的2倍,求白兔和黑兔各有
多少只?
2、 甲、乙两数的和是250,甲数是乙数的4倍。求甲、乙两数各是多少?
3、 三兄弟存款600元,已知老大存的钱数是老三的3倍,老二存的钱数是老三的2倍。求
三兄弟各存款多少?
4、 A、B、C三个数的和是1200,其中B是A的3倍C是B的2倍,求这三个数。
5、 师徒两人共生产了380个轮胎,师傅生产的车胎个数比徒弟的2倍还多20个,师徒各
生产多少个?
6、 有一批大米共1800千克,分装在甲、乙、丙三条船上,甲船的千克数是乙船的2倍,
如果丙船装300千克,那么甲、乙两船各装多少千克?
7、 两个数的和是352,其中一个加数的个位是0,若把0去掉,则与另一个加数相同,这
两个数各是多少?
8、 王晶的彩笔比铅笔多12支,已知彩笔的支数是铅笔的3倍,王晶的彩笔和铅笔各是多
少支?
9、 甲的存款是乙的4倍,甲比乙多存600元,求甲、乙俩人各有多少存款?
10、 爸爸今年刚好比张强大29岁,且是张强年龄的3倍多1岁,爸爸和张强今年各是多
少岁?
11、 已知两个数相除的商为4,相减的
鸡兔同笼教学反思
篇一:鸡兔同笼教学反思
鸡兔同笼教学反思(朱燕芳)
数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:
一、大敢转换情境,提高情境“知名度”。
生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活” 当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)
1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少
《鸡兔同笼》教学案例
《鸡兔同笼》教学案例
黄陂区姚集街李集小学 胡必然
【设计说明】
“鸡兔同笼”是人教版六年级上册第七单元《数学广角》中的内容,它是中国古代有名的算题之一,其解法充满奇思妙想,在民间也广为流传。无论是从数学思维价值还是趣味性来看,它早已融入了中国数学特色文化之中。
1、内容地位及认识:“鸡兔同笼”问题是一个独特、思想内涵丰富的数学题材,从古代的假设妙想到今人的方程求解,无不体现了数学思维发展和数学科学的魅力。教材借“鸡兔同笼”这个富有浓郁生活气息的载体,强调通过假设推理、列表分析、方程求解的过程,获得解决问题的一般方法,重点培养学生多策略意识。另外,这一内容也是激发学生学习兴趣、增强民族自豪感的好载体。
2、设计理念和思路:以其数学文化特色和问题的趣味性吸引学生主动参与,以其挑战性激发学生独立思考与合作探究;结合内容特点努力构建生活化的学习历程,增强体验,让学生感悟到数学知识的有用、有趣;通过探索、解决问题过程强调策略的多样性及其优化对问题解决的作用与意义,着力培养认知与应用技能,发展学生思维;彰显数学文化价值,激发探究数学科学的兴趣,增强自信心。
具体思路见下面的关系图: 猜想感知 文化渗透 【教学设计】
[教学内容]人教版小学数
鸡兔同笼讲题定稿
鸡兔同笼讲题稿
尊敬的各位评委、老师们:
大家好!我来自浏阳人民路小学,我的讲题是“鸡兔同笼”问题。 我将从下面5个方面进行讲解。 一、 题目背景
笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
题目来源:人教版六年级上册教材第七单元“数学广角”113页的一个例题。
“孙子算经”中原题是这样的:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 这个例题在原题的基础上将数据简单化了。 1、 选题目的:
(1)彰显了数学的文化价值,是一道经典趣题,代表了我国渊源流长的数学历史。
(2)蕴含了重要的数学思想方法。
“鸡兔同笼”是数学广角中的一个问题。而“数学广角”在教材中的地位主要是“向学生渗透一些数学思想方法”。 “鸡兔同笼”问题就蕴含着化归、枚举、数形结合、假设、方程、建模等重要的数学思想。
二、题目分析
1、已知条件:8个头,26只脚。
隐藏条件:鸡有2只脚,兔有4只脚 要解决的问题:鸡有多少只?兔有多少只? 三、解题过程。
解决鸡兔同笼问题常用的方法有列表法、假设法、列方程。 学生最初最容易选择的最朴素的做法就是猜测、列表。我让学生理解了题意后,让学生猜一猜,鸡和兔各有几只。学生跃跃欲试。然后
鸡兔同笼分类讲解
鸡兔同笼
鸡兔同笼的解法有6种,包括列表法,站队法,捆绑法,假设法,解方程和线段法。其中线段法和解方程都是五年级的知识。站队法、捆绑法和假设法的计算过程其实是一样的,只是需要考虑学生的理解能力。设未知数的解法一般可以倒推回假设法中的综合算式。线段法较直观,能够一眼看出鸡兔的数量差距,需要明确鸡兔脚数如果相等,则兔子数量是鸡数量的2倍,这样的鸡兔总头数会是兔子数量的3倍。
以下主要从假设法和线段法讲解,鸡兔同笼的四种题型“总-总”,“差-差”,“总-差”,“互换”。
(总总)1.总头数,总脚数(晴天、雨天,运费,答题)
|设总头数全鸡或全兔×总头数-总脚数|÷(单只鸡兔脚数差4-2)
鸡兔同笼,鸡兔头数共15只,脚数共44只,问鸡兔各有多少只? ①设全鸡,求兔:(44-2×15)÷(4-2)=7(只) ②设全兔,求鸡:(4×15-44)÷(4-2)=8(只)
共52人,用了11条船,每条大船可载6人,小船可载4人,问大、小船各有几只? ①设全小船,求大船:(52-4×11)÷(6-4)=4(只) ②设全大船,求小船:(6×11-52)÷(6-4)=7(只)
10道题,对一道加10分,错一道扣2分,共得分7
《鸡兔同笼》教学实录 - 图文
《鸡兔同笼》教学实录
教学内容:义务教育课程标准实验教科书《小学数学》六年级上册第7单元数学广角---鸡兔同笼问题。 教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3、在解决问题的过程中,培养学生的思维能力,并向学渗透转化.函数
等数学思想和方法。
教学重点:尝试用不同的方法解决鸡兔同笼问题. 教学难点:用假设解决鸡兔同笼问题. 教学准备:课件一套,练习纸。 课前导入:
①师: 同学们好!又见到你们,真开心!同学们,问你们一个问题,喜不喜
欢画画?会不会画简笔画?知道怎么画鸡?师板: 兔呢?板:
②师: 一只鸡和一只兔共有只几脚?生:六只。一只兔比一只鸡多了几只脚?生:2只。
③师:给你们讲个小故事,一只调皮的小兔模仿小鸡走路,(多媒体出示)
想一想,如果有5 只兔子模仿鸡的話,地上的脚会少几只?请看5只小兔少几
只脚,先看看一只小兔模仿会少几只脚,(生:少2只)2只 3只 4只 5只 一共少了几只啊?
④师: 小鸡也想模仿小兔呢?(多媒体出示)
想一想,如果有7 只鸡模仿兔子的话,地上的脚会怎么