高中数学符号读法大全

“高中数学符号读法大全”相关的资料有哪些?“高中数学符号读法大全”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学符号读法大全”相关范文大全或资料大全,欢迎大家分享。

高中数学公式大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8

高中数学公式大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8

高中数学公式大全(文科)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中文科数学公式

高中数学常用公式及常用结论

1. 元素与集合的关系

x A x CUA,x CUA x A.

2. 德摩根公式

CU(A B) CUA CUB;CU(A B) CUA CUB.

3. 包含关系

A B A A B B A B CUB CUA

A CUB CUA B R

4. 容斥原理

card(A B) cardA cardB card(A B)

card(A B C) cardA cardB cardC card(A B)

card(A B) card(B C) card(C A) card(A B C).

5. 集合{a1,a2, ,an}的子集个数共有2n 个;真子集有2n–1个;非空子集

有2n –1个;非空的真子集有2n–2个. 6. 二次函数的解析式的三种形式

① 一般式f(x) ax2 bx c(a 0); ② 顶点式f(x) a(x h)2 k(a 0); ③ 零点式f(x) a(x x1)(x x2)(a 0). 7. 解连不等式N f(x) M常有以下转化形式:

N f(x) M [f(x) M][f(x) N] 0

|f(x)

f(x) NM NM N

0 |

M f(x)22

11

.

f(x) NM N

高中文科数学公式

8.

高中数学公式大全(文科)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中文科数学公式

高中数学常用公式及常用结论

1. 元素与集合的关系

x A x CUA,x CUA x A.

2. 德摩根公式

CU(A B) CUA CUB;CU(A B) CUA CUB.

3. 包含关系

A B A A B B A B CUB CUA

A CUB CUA B R

4. 容斥原理

card(A B) cardA cardB card(A B)

card(A B C) cardA cardB cardC card(A B)

card(A B) card(B C) card(C A) card(A B C).

5. 集合{a1,a2, ,an}的子集个数共有2n 个;真子集有2n–1个;非空子集

有2n –1个;非空的真子集有2n–2个. 6. 二次函数的解析式的三种形式

① 一般式f(x) ax2 bx c(a 0); ② 顶点式f(x) a(x h)2 k(a 0); ③ 零点式f(x) a(x x1)(x x2)(a 0). 7. 解连不等式N f(x) M常有以下转化形式:

N f(x) M [f(x) M][f(x) N] 0

|f(x)

f(x) NM NM N

0 |

M f(x)22

11

.

f(x) NM N

高中文科数学公式

8.

高中数学必修五公式大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修五公式大全

一、解三角形:ΔABC的六个元素A, B, C, a , b, c满足下列关系: 1、角的关系:A + B + C =____,

特殊地,若ΔABC的三内角A, B, C成等差数列,则∠B =_____, ∠A +∠C =____.

2、诱导公式的应用:sin ( A + B ) =________, cos ( A + B ) = ________,

sin (ABCABC2?2) = cos2 , cos (2?2) = sin2.

3、边的关系:a + b > c , a – b < c(两边之和大于第三边,两边之差小于第三边.) 4、边角关系:(1)正弦定理:???2R

(R为ΔABC外接圆半径),

?a?2RsinA 分体型:???,推论:a:b:c?::.

???(2)余弦定理:??a2?____?____?__________,?b?____?____

变形:??2?cosA???__________,????c2?____?____?__________.?cosB?????cosC?5、面积公式:S?ABC?_______?_______?_______.

二、数列 (一)、等差数列{ a n }:定义:_____?_____?__

高中数学公式大全(必备版)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学公式及知识点速记

1、函数的单调性

(1)设1212[,],x x a b x x ∈<、且那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数;

],[)(0)()(21b a x f x f x f 在?>-上是减函数.

(2)设函数)(x f y =在某个区间内可导,

若0)(>'x f ,则)(x f 为增函数;

若0)(<'x f ,则)(x f 为减函数;

)

若()=0f x ',则)(x f 有极值。

2、函数的奇偶性

若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。 若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义

函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.

4、几种常见函数的导数

①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; 。

⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧x x 1)

高中数学公式大全(高考必备)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学公式大全(含初中常用公式)(高考必备)

1. 元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??.

2.德摩根公式

();()U U U U U U C A B C A C B C A B C A C B ==.

3.包含关系

A B A A B B =?=U U A B C B C A ????

U A C B ?=ΦU C A B R ?=

4.容斥原理

()()card A B cardA cardB card A B =+-

()()card A B C cardA cardB cardC card A B =++-

()()()()card A B card B C card C A card A B C ---+.

5.集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.

6.二次函数的解析式的三种形式

(1)一般式2

()(0)f x ax bx c a =++≠;

(2)顶点式2()()(0)f x a x h k a =-+≠;

(3)零点式12()()()(0)f x a x x x x a =--≠.

7.解连不等式()N f x M

高中数学必修五公式大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修五公式大全

一、解三角形:ΔABC的六个元素A, B, C, a , b, c满足下列关系: 1、角的关系:A + B + C =____,

特殊地,若ΔABC的三内角A, B, C成等差数列,则∠B =_____, ∠A +∠C =____.

2、诱导公式的应用:sin ( A + B ) =________, cos ( A + B ) = ________,

sin (ABCABC2?2) = cos2 , cos (2?2) = sin2.

3、边的关系:a + b > c , a – b < c(两边之和大于第三边,两边之差小于第三边.) 4、边角关系:(1)正弦定理:???2R

(R为ΔABC外接圆半径),

?a?2RsinA 分体型:???,推论:a:b:c?::.

???(2)余弦定理:??a2?____?____?__________,?b?____?____

变形:??2?cosA???__________,????c2?____?____?__________.?cosB?????cosC?5、面积公式:S?ABC?_______?_______?_______.

二、数列 (一)、等差数列{ a n }:定义:_____?_____?__

高中数学基础公式及总结大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

袁轲教学资料(高中数学)

高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A.

2.德摩根公式

CU(AB)?CUACUB;CU(AB)?CUACUB.

3.包含关系

AB?A?AB?B?A?B?CUB?CUA

?ACUB???CUAB?R

4.容斥原理

card(AB)?cardA?cardB?card(AB)

card(ABC)?cardA?cardB?cardC?card(AB)

?card(AB)?card(BC)?card(CA)?card(ABC).

5.集合{an1,a2,,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2空的真子集有2n–2个.

6.二次函数的解析式的三种形式 (1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

?|f(x)?M?Nf(x)?N2|?M?N2?M?f(x)?0

1

1个;非

–袁轲教学资料(高中数学)

?11?

高中数学解题思想方法大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

目录

前言 (2)

第一章高中数学常用的数学思想 (3)

一、数形结合思想 (3)

二、分类讨论思想 (9)

三、函数与方程思想 (15)

四、转化(化归)思想 (22)

第二章高中数学解题基本方法 (23)

一、配方法 (23)

二、换元法 (27)

三、待定系数法 (34)

四、定义法 (39)

五、数学归纳法 (43)

六、参数法 (48)

七、反证法 (52)

八、消去法 (54)

九、分析与综合法 (55)

十、特殊与一般法 (56)

十一、类比与归纳法 (57)

十二、观察与实验法 (58)

第三章高考热点问题和解题策略 (59)

一、应用问题 (59)

二、探索性问题 (65)

三、选择题解答策略 (71)

四、填空题解答策略 (77)

附录………………………………………………………

一、高考数学试卷分析…………………………

二、两套高考模拟试卷…………………………

三、参考答案……………………………………

实用文档

.

前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一

个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题