圆锥曲线中向量问题常见解题思路

“圆锥曲线中向量问题常见解题思路”相关的资料有哪些?“圆锥曲线中向量问题常见解题思路”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线中向量问题常见解题思路”相关范文大全或资料大全,欢迎大家分享。

向量与圆锥曲线 - 图文

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

圆锥曲线

一.向量与圆锥曲线: AP??PB型;PA??1PQ,PB??2PQ型;OM??OA??OB型.

x2?11??y2?1上的两点,并且点N(?2,0)满足NA??NB,当???,?时,求例1.已知A,B是椭圆2?53?直线AB斜率的取值范围.

例2.已知抛物线C:y?4x,过抛物线的焦点F的直线交C于A,B两点,交准线l于点M,已知

2MA??1AF,MB??2BF,求?1??2.

例3.已知椭圆x?3y?3b,斜率为1且过右焦点F的直线交椭圆于A,B两点,M为椭圆上任一点,且OM??OA??OB, 求???.

方法总结:

22222?x1?x2?(1??)x2(1)若能得到x1??x2, 则构造出两根之和与两根之积得?消去得2?x1x2??x2(x1?x2)2(1??)2,再利用韦达定理应用; ?x1x2?(2)若PA??1PQ,PB??2PQ,则可以用A,B的横坐标x1,x2或纵坐标y1,y2来表示?1和?2,当

?1和?2满足一定的关系时,进一步用韦达定理作整体代换;

(3)直线与圆锥曲线相交于A,B两点,若点M满足OM??OA??OB,用A,B两点的坐标来表示M,如果M在曲线上,则将M的坐标表达式代入曲线方程

向量与圆锥曲线 - 图文

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

圆锥曲线

一.向量与圆锥曲线: AP??PB型;PA??1PQ,PB??2PQ型;OM??OA??OB型.

x2?11??y2?1上的两点,并且点N(?2,0)满足NA??NB,当???,?时,求例1.已知A,B是椭圆2?53?直线AB斜率的取值范围.

例2.已知抛物线C:y?4x,过抛物线的焦点F的直线交C于A,B两点,交准线l于点M,已知

2MA??1AF,MB??2BF,求?1??2.

例3.已知椭圆x?3y?3b,斜率为1且过右焦点F的直线交椭圆于A,B两点,M为椭圆上任一点,且OM??OA??OB, 求???.

方法总结:

22222?x1?x2?(1??)x2(1)若能得到x1??x2, 则构造出两根之和与两根之积得?消去得2?x1x2??x2(x1?x2)2(1??)2,再利用韦达定理应用; ?x1x2?(2)若PA??1PQ,PB??2PQ,则可以用A,B的横坐标x1,x2或纵坐标y1,y2来表示?1和?2,当

?1和?2满足一定的关系时,进一步用韦达定理作整体代换;

(3)直线与圆锥曲线相交于A,B两点,若点M满足OM??OA??OB,用A,B两点的坐标来表示M,如果M在曲线上,则将M的坐标表达式代入曲线方程

圆锥曲线部分常见结论

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

沈阳市第三十一中学 李曙光编辑整理,希望对大家有帮助,疏漏之处请指正 椭圆常见结论

焦点的位置 焦点在x轴上 焦点在y轴上 图形 标准方程 x2y2?2?1?a?b?0? 2ab?a?x?a且?b?y?b y2x2?2?1?a?b?0? 2ab?b?x?b且?a?y?a 范围 ?1??a,0?、?2?a,0? 顶点 ?1?0,?a?、?2?0,a? ?1??b,0?、?2?b,0? ?1?0,?b?、?2?0,b? 轴长 焦点 焦距 对称性 短轴的长?2b 长轴的长?2a F1??c,0?、F2?c,0? F1?0,?c?、F2?0,c? F1F2?2c?c2?a2?b2? 关于x轴、y轴、原点对称 离心率 cb2e??1?2?0?e?1?e越小,椭圆越圆;e越大,椭圆越扁aa 1.椭圆的两焦点分别为F1,F2,P是椭圆上任意一点,则有以下结论成立: (1)PF1?PF2?2a; (2)a?c?PF1?a?c; (3)b?PF1?PF2?a;

22x2y22. 椭圆的方程为2?2?1(a>b>0), 左、右焦点分别为F1,F2,P?x0,y0?是椭圆上

ab任

,

:

(1)

b22a2222y0?2?a?x0?,x0?2?b?

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

圆锥曲线与向量综合题

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

圆锥曲线与平面向量

考纲透析

考试大纲:椭圆、双曲线、抛物线的定义、标准方程、几何性质以及直线与圆锥曲线的位置关系,平面向量的概念,向量的坐标运算.

[来源:学科网ZXXK]圆锥曲线与平面向量的综合. 新题型分类例析

来源:[Zxxk.Com]1.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(3,0) (1)求双曲线C的方程; (2)若直线l:y?kx?且OA?OB?2(其 2与双曲线C恒有两个不同的交点A和B,

中O为原点). 求k的取值范围.

xa22解:(Ⅰ)设双曲线方程为?yb22?1 (a?0,b?0).

由已知得a?3,c?2,再由a?b22?2,得b22?1.

故双曲线C的方程为

x23?y2?1.

(Ⅱ)将y?kx?2代入x23?y2?1得 (1?3k)x?62kx?9?0.

222??1?3k?0,由直线l与双曲线交于不同的两点得?

222????(62k)?36(1?3k)?36(1?k)?0.2即k?13且k2?1. ① 设A(xA,yA),B(xB,yB),则

xA?xB?62k1?3k2,xAxB??91?3k2,由OA?OB?2得xAxB?yAyB?2,

2而xAxB?yAyB?xAxB

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

圆锥曲线解题技巧经典实用

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

v1.0 可编辑可修改

1 1 圆锥曲线―概念、方法、题型、及应试技巧总结

1.圆锥曲线的两个定义:

(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .

421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C )

; (2

方程8=表示的曲线是_____(答:双曲线的左

支)

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心

圆锥曲线热点问题

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

专题限时集训(十七)A

[第17讲 圆锥曲线热点问题]

(时间:10分钟+35分钟)

1.抛物线y=4x上一点到直线y=4x-5的距离最短,则该点的坐标是( )[来源:学科网ZXXK]

A.(1,2) B.(0,0) 1?C.??2,1? D.(1,4)

2.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与

→→→→

点P关于y轴对称,O为坐标原点,若BP=2PA,且OQ·AB=1,则点P的轨迹方程是( )

3

A.x2+3y2=1(x>0,y>0) 23

B.x2-3y2=1(x>0,y>0) 2

3

C.3x2-y2=1(x>0,y>0)

23

D.3x2+y2=1(x>0,y>0)

2

1x2y2

3.已知直线y=x与双曲线-=1交于A、B两点,P为双曲线上不同于A、B的点,

294

当直线PA,PB的斜率kPA,kPB存在时,kPA·kPB=( )

4A. 91B. 22C. 3

D.与P点位置有关

x2y2

4.设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为

2516

(6,4),则|PM|+|PF1|的最大值为________.

2222

1.与两圆x+y=1及x+y-8x+12=0都

圆锥曲线问题总结答案

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

圆锥曲线问题总结答案

一、 圆锥曲线的定义及应用

例1:分析⑴可利用椭圆定义、三角形的三边间关系及不等式性质求最值;题⑵是圆锥曲线与数列性质的综合题,可根据条件先求出双曲线的半实轴长a的值,再应用双曲线的定义与等差中项的知识求|AB|的值.

解:⑴设椭圆右焦点为F1,则|MF|?|MF1|?6,∴|MA|?|MF|?|MA|?|MF1|?6.又 ?|AF1|?|MA|?|MF1|?|AF1|(当M、A、F1共线时等号成立).又

|AF1|?2,∴|MA|?|MF|?6?2, |MA|?|MF|?6?2.故|MA|?|MF|的最大值为6?2,最小值为6?2.

?2b?6?7?c ⑵依题意有??,解得a?23.∵A、B在双曲线的左支上,∴|AF2|?|AF1|?2a,

a2?222?c?a?b?|BF2|?|BF1|?2a,∴

|AF2|?|BF2|?(|AF1|?|BF1|)?4a.又

|AF2|?|BF2|?2|AB|,|AF1|?|BF1|?|AB|.

∴2|AB|?|AB|?4a,即|AB|?4a.∴|AB|?4?23?83.

小结:在本例的两个小题中,⑴正确应用相应曲线的定义至关重要,否则求解思路受阻;⑵忽视双曲线定义中的两

直线和圆锥曲线常见题型(好)

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

直线和圆锥曲线经常考查的一些题型

直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.

直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。

解决直线和圆锥曲线的位置关系的解题步骤是: (1)直线的斜率不存在,直线的斜率存, (2)联立直线和曲线的方程组; (3)讨论类一元二次方程 (4)一元二次方程的判别式 (5)韦达定理,同类坐标变换 (6)同点纵横坐标变换

(7)x,y ,k(斜率)的取值范围

(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等

运用的知识:

1、中点坐标公式:12

12

,y 2

2

x x y y x ++==

,其中,x y 是点1122(,)(,)A x y B x y ,的中

点坐标。

2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,

则1122y kx b y kx b