高中数学竞赛二试组合
“高中数学竞赛二试组合”相关的资料有哪些?“高中数学竞赛二试组合”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学竞赛二试组合”相关范文大全或资料大全,欢迎大家分享。
组合计数(高中数学竞赛)
兰州老师讲的组合数学,看晚会有一定帮助
高中数学竞赛中组合方法应用
组合计数主讲人:刘海宁
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
兰州交通大学数理与软件工程学院
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
兰州交通大学数理与软件工程学院
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
兰州交通大学数理与软件工程学院
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
兰州交通大学数理与软件工程学院
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
兰州交通大学数理与软件工程学院
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
兰州交通大学数理与软件工程学院
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
兰州交通大学数理与软件工程学院
兰州老师讲的组合数学,看晚会有一定帮助
组合方法
组合计数
应用组合方法解决计数问题(组合计数问题)
1 分类计数 2 几个计数原理(加法原理与乘法原理、极值 原理、抽屉原理、容斥原理、最小数原理、从 反面考虑问题等) 3 排列组合计数公式:Cn m
n ( n 1)( n 2 ) ( n m 1) m!
Pn
m
n ( n 1)( n 2 ) ( n
高中数学竞赛专题练习 - 排列组合
高中数学竞赛专题讲座之 排列组合 二项式定理和概率
一. 排列组合二项式定理
1 (2005年浙江)设1?x?x2nn??n求a2?a4???a2n的值( ) ?a0?a1x???a2nx2n,
3n?13n?1 (A)3 (B)3?2 (C) (D)
22【解】: 令x?0 得 a0?1;(1) 令x??1 得 a0?a1?a2?a3???a2n?1; (2)
n令x?1 得 a0?a1?a2?a3???a2n?3; (3)
(2)+(3)得 2(a0?a2?a4???a2n)?3?1,故 a0?a2?a4???a2nn3n?1?,
2再由(1)得 a2?a4???a2n3n?1?。 ?选 【 C 】
22、(2004 全国)设三位数n?abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有 ( )
A. 45个 B. 81个 C. 165个 D. 216个 解:a,b,c要能构成三角形的
高中数学竞赛专题二 数列
高中数学竞赛专题讲座之 数列
一、选择题部分
1.(2006年江苏)已知数列 an 的通项公式an
A a1
B a2
2
,则 an 的最大项是( B ) 2
n 4n 5
C a3 D a4
23
2.(2006安徽初赛)正数列满足a1 1,a2 10,anan 2 10an t n 3 ,则lg(a100) ( )
A、98 B、99 C、100 D、101
3. (2006吉林预赛)对于一个有n项的数列P=(p1,p2, ,pn),P的“蔡查罗和”定义为s1、s2、 sn、的算术平均值,其中sk=p1+p2+ pk(1≤k≤n),若数列(p1,p2, ,p2006)的“蔡查罗和”为2007,那么数列(1,p1,p2, ,p2006)的“蔡查罗和”为 ( A )
A. 2007 B. 2008 C. 2006 D. 1004
4.(集训试题)已知数列{an}满足3an+1+an=4(n≥1),且a1=9,其前n项之和为Sn。则满足不等式|Sn-n-6|<
1
高中数学竞赛训练题二
数学训练题(二)
一、选择题 2、满足y
( ) x 3 x 2007的正整数数对(x,y)
(A)只有一对 (B)恰有有两对 (C)至少有三对 (D)不存在
3、设集合M={-2,0,1},N={1,2,3,4,5},映射f:M N使对任意的x∈M,都有3是奇数,则这样的映射f的个数是( )
(A)45 (B)27 (C)15 (D)11 4、设方程
x2y2
1所表示的曲线是( ) 2007 2007
sin(19)cos(19)
(A)双曲线 (B)焦点在x轴上的椭圆
(C)焦点在y轴上的椭圆 (D)以上答案都不正确
5、将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。那么,所有的三位数中,奇和数有( )个。 (A)100 (B)120 (C)160 (D)200
6、函数y f(x)与y g(x)有相同的定义域,且对定义域中的任何x,有。若g(x) 1
的解集是{x|x 0},则
高中数学排列组合
模块九 排列与组合、二项式定理 第一部分:排列、组合 一。计数原理
加法计数原理:如果完成一件事情可以分为m类,每一类的方法数分别是:N1,N2,N3,…..Nm,则完成这件事情共有N1+N2+N3+…..+Nm种方法。(又称分类计数原理)
乘法计数原理:如果完成一件事情须分为m步,每一步的方法数分别是:N1,N2,N3,…..Nm,则完成这件事情共有N1?N2?N3?…..?Nm种方法。(又称分类计数原理) 分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于全章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决。正确区分和使用两个原理是学好本章的关键,其核心是“完成一件事”是“分类”完成,还是“分步”完成. 二。排列数、组合数的定义
①排列数:从n个元素中取出m个排成一列(即排入m个位置),共有An种排法。
Am(n-2)?(n-m+1).特别的:An?n! n=n(n-1)
②组合数:从n个元素中取出m个形成一个组合,共有Cn种取法。 Cmn=
mnmn!0n特别地:Cn?1,Cn?1
(n?m)!m!组合数的两个性质:
n?mmm?1(1)Cm; (2)Cmn?1=C
1997年全国高中数学联合竞赛试卷一试
http://gaoyun63.go.163.com
1997年全国高中数学联合竞赛试卷
(10月5日上午8:00?10:00)
一、选择题(每小题6分,共36分)
1.已知数列{xn}满足xn?1?xn?xn?1(n≥2),x1?a, x2?b, 记Sn?x1+x2+?+xn,则下列结论正确的是
(A)x100??a,S100=2b?a (B)x100??b,S100?2b?a (C)x100??b,S100=b?a (D)x100??a,S100?b?a
2.如图,正四面体ABCD中,E在棱AB上,F在棱CD上,使得
AE?CF??(0?????), AEBFD记f(?)??????其中??表示EF与AC所成的角,
??表示EF与BD所成的角,则 (A)f(?)在(0,??)单调增加 (B)f(?)在(0,??)单调减少
(C)f(?) 在(0,1)单调增加,而在(1,+?)单调减少 (D)f(?)在(0,+?)为常数
EBFCD3. 设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有
(A)2个 (B)3个 (C)4个
高中数学竞赛讲座20讲
竞赛讲座01-奇数和偶数
整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数. 关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则a+b与a-b有相同的奇数偶;
(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题
例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?
□+□=□, □-□=□,
□3□=□ □÷□=□.
解 因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.
例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组
是整数,那么
(A)p、q都是偶数. (B)p、q
高中数学竞赛讲座20讲
竞赛讲座01-奇数和偶数
整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数. 关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则a+b与a-b有相同的奇数偶;
(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题
例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?
□+□=□, □-□=□,
□3□=□ □÷□=□.
解 因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.
例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组
是整数,那么
(A)p、q都是偶数. (B)p、q
2014浙江高中数学竞赛试题
智浪教育—普惠英才文库
2014年浙江省高中数学竞赛试题
一、选择题(本大题共有10小题,每题只有一个正确答案,将正确答案的序号填入题干后
的括号里,多选、不选、错选均不得分,每题5分,共50分)
1.已知集合P={1,|a|},Q={2,b2}为全集U={1,2,3,a2+b2+a+b}的子集,且CU{P∪Q}={6},则下面结论正确的是( D )
A.a=3,b=1
B.a=3,b=-1
C.a=-3,b=1 D.a=-3,b=-1
2.已知复数z1, z2,且|z1|=2,|z2|=2,|z1+z2|=7,则|z1-z2|的值为( D )
A.5
B.7 C.3
D.3 3.已知∠A, ∠B, ∠C为△ABC的三个内角,命题P:∠A =∠B;命题Q:sin∠A =sin∠B,则﹁P是﹁Q 的( C )
A.充分非必要条件 C.充分必要条件
B.必要非充分条件
D.既非充分又非必要条件
20144.已知等比数列{an}:a1=5,a4=625,则
1=( A ) ?k?1log5aklog5ak?1
C.
A.
2014 2015 B.
2013 2014
高中数学竞赛专题讲座之二:数列
高中数学竞赛专题讲座之二:数列
一、选择题部分
1.(2006年江苏)已知数列 an 的通项公式an
A.a1
B.a2
2n 4n 5
2
,则 an 的最大项是(B)
D.a4
C.a3
32.(2006安徽初赛)正数列满足a1 1,a2 10,an2an 2 10ann 3 ,则lg(a100) ( ) t A.98 B.99 C.100 D.101 3.(2006吉林预赛)对于一个有n项的数列P=(p1,p2, ,pn),P的“蔡查罗和”定义为s1、s2、 sn、的算术平均值,其中sk=p1+p2+ pk(1≤k≤n),若数列(p1,p2, ,p2006)的“蔡查罗和”为2007,那么数列(1,p1,p2, ,p2006)的“蔡查罗和”为 (A) A.2007 B.2008 C.2006 D.1004 4.(集训试题)已知数列{an}满足3an+1+an=4(n≥1),且a1=9,其前n项之和为Sn。则满足不等
式|Sn-n-6|<
A.5
1125
的最小整数n是
B.6
C.7
D.8
13
( )
解:由递推式得:3(an+1-1)=-(an-1),则{an-1}是